
MATH 566 LECTURE NOTES 1: HARMONIC FUNCTIONS

TSOGTGEREL GANTUMUR

1. The mean value property

In this set of notes, we consider real-valued functions on two-dimensional domains, although
it is straightforward to generalize the results to, e.g., vector-valued functions defined on n-
dimensional domains. The symbol Dr(z) denotes the open disk with radius r and centre z,
and we set Dr = Dr(0). Unless otherwise specified, in what follows Ω will be an open subset
of R2.

Definition 1. Let Ω ⊆ R2 be open. Then a continuous function u ∈ C(Ω) is said to have the
mean value property and written u ∈ MVP(Ω), if it satisfies

u(z) =
1
πr2

∫
Dr(z)

u(w)dw, for all Dr(z) ⊂ Ω.

It is easy to show (by differentiating and integrating with respect to r) that the above
condition is equivalent to

u(z) =
1

2π

∫ 2π

0
u(z + r cis θ)dθ, for all Dr(z) ⊂ Ω,

where we have used the shorthand notation cis θ = (cos θ, sin θ) ∈ R2. Let us also introduce
the notation Har(Ω) = {u ∈ C2(Ω) : ∆u = 0} for the set of harmonic functions in Ω.

Theorem 2. Har(Ω) ⊆ MVP(Ω).

Proof. Let u ∈ Har(Ω), and let Dr(z) ⊂ Ω and ρ ∈ (0, r). Then obviously the following
integral must vanish:∫

Dρ(z)
∆u =

∫
∂Dρ(z)

∂νudl = ρ

∫ 2π

0
∂ρu(z + ρ cis θ)dθ = ρ∂ρ

∫ 2π

0
u(z + ρ cis θ)dθ,

where commuting the derivative ∂ρ with the integration over θ is justified because the functions
(ρ, θ) 7→ u(z + ρ cis θ) and (ρ, θ) 7→ ∂ρu(z + ρ cis θ) are both continuous. Now from the
fundamental theorem of calculus we have

∂ρ

∫ 2π

0
u(z + ρ cis θ)dθ = 0 ⇒

∫ 2π

0
u(z + r cis θ)dθ − 2πu(z) = 0.

�

So viewed as a tool, the mean value property can be used to prove properties of harmonic
functions. The following converse shows that the mean value property can also be used to
prove harmonicity.

Theorem 3. MVP(Ω) ⊆ Har(Ω) and MVP(Ω) ⊆ C∞(Ω).
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Proof. Let ϕ ∈ C∞0 (D1) be a positive function with
∫
ϕ = 1, which is also radial, i.e., ϕ(z) =

ψ(|z|) for some ψ. The normalization of ϕ implies 2π
∫ 1

0 rψ(r)dr = 1. Set ϕε(z) = ε−2ϕ(z/ε)
for ε > 0, and assume that z ∈ Ω and ε < dist(z, ∂Ω). Then∫

Ω
u(w)ϕε(w − z)dw =

∫
Ω
u(z + w)ϕε(w)dw =

1
ε2

∫
|w|<ε

u(z + w)ψ(
|w|
ε

)dw

=
1
ε2

∫
r<ε

∫ 2π

0
u(z + r cis θ)ψ(

r

ε
)rdrdθ =

2πu(z)
ε2

∫
r<ε

ψ(
r

ε
)rdr = u(z),

which means that u = ϕε ∗ u, and so u ∈ C∞(Ω).
Now let Dr(z) ⊂ Ω, and compute∫

Dr(z)
∆u(w)dw = r∂r

∫ 2π

0
u(z + r cis θ)dθ = r∂r(2πu(z)) = 0.

Since Dr(z) is arbitrary, we conclude that ∆u = 0 in Ω. �

2. Simple consequences of the mean value property

Recall that an open set Ω is connected if it cannot be decomposed as the disjoint union of
two open sets.

Theorem 4 (Maximum principle). Let Ω ⊆ R2 be open, and let u ∈ C2(Ω) be a subharmonic
function in Ω, i.e., ∆u ≥ 0 in Ω.

(a) If Ω is connected and u(z) = sup
Ω
u at some z ∈ Ω, then u is constant.

(b) If Ω is bounded and u ∈ C(Ω̄), then we have sup
Ω
u ≤ max

∂Ω
u.

Proof. For part (a), let M = u(z) = sup
Ω
u. Then we can write the mean value property as

∫ 2π

0
[u(z)− u(z + r cis θ)]dθ = 0, for all sufficiently small r > 0.

The integrand is a nonnegative continuous function, so it must vanish, which implies that
u(w) = M in a small disk w ∈ Dr(z). In other words, the set Σ = {z ∈ Ω : u(z) = M} is
open. Since u is continuous, the set {z ∈ Ω : u(z) < M} = Ω \ Σ is also open. This means
that either Σ = Ω or Σ = ∅, but Σ is not empty by hypothesis.

For part (b), there is z ∈ Ω̄ with u(z) = sup
Ω̄

u since Ω is bounded and u is continuous on

Ω̄. If z ∈ ∂Ω then we are done; otherwise applying part (a) to the connected component of Ω
that contains z concludes the proof. �

Remark 5. In part (b) of the above theorem, the condition that Ω be bounded cannot be
simply removed, as can be seen from the example u(x, y) = ex cos y on (0,∞)× (−π

2 ,
π
2 ).

In the following theorem we use complex notation for convenience.

Theorem 6 (Schwarz reflection principle). Let Ω ⊂ C be an open set symmetric with respect
to the real axis, and let Ω+ = Ω∩{=z > 0} be the part of it in the upper half plane. Moreover,
assume that u ∈ Har(Ω), and that u(z) → 0 as z ∈ Ω+ tends to any point on the real axis
{=z = 0}. Then u extends to be harmonic on Ω, and the extension satisfies

u(z̄) = −u(z), z ∈ Ω.
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Proof. Let Ω− = {z̄ : z ∈ Ω+}, and extend u to a function on Ω by u(z) = 0 for z ∈ Ω∩{=z =
0} and u(z) = −u(z̄) for z ∈ Ω−. Then the mean value property is obviously satisfied at points
z ∈ Ω+ ∪Ω−. But for (the remaining) points z with =z = 0, since u(z) = −u(z̄), the integral
of u over any small circle centred at z is zero, giving the mean value property for those
points. �

For Ω ⊆ R2 and a function u ∈ C(Ω), we define the uniform norm

‖u‖Ω = sup
Ω
|u|.

We say that a sequence of functions {uk} ⊂ C(Ω) converges uniformly on Ω to u ∈ C(Ω), if
‖uk−u‖Ω → 0. Recall that continuity and the Riemann integral are preserved under uniform
limits.

Theorem 7. If {uk} ⊂ Har(Ω) converges uniformly on Ω to u, then u ∈ Har(Ω).

Proof. We have u ∈ C(Ω). Let Dr(z) ⊂ Ω. Then we have

2πuk(z) =
∫ 2π

0
uk(z + r cis θ)dθ, for all k.

Since the left hand side converges to 2πu(z), and the integrand converges uniformly to θ 7→
u(z + r cis θ), the mean value property over ∂Dr(z) is satisfied for u, and since Dr(z) is
arbitrary we have u ∈ Har(Ω). �

3. Derivative bounds

Noting that partial derivatives of harmonic functions are also harmonic, and by using the
mean value property for the partial derivatives, we can bound the derivatives of harmonic
functions by the size of the function itself. Recall that for ν = (ν1, ν2) with |ν| = 1, the
directional derivative along ν is defined by ∂νu = ν1∂xu+ ν2∂yu.

Theorem 8. Let u ∈ Har(Ω) and D̄r(z) ⊂ Ω. Then for any ν ∈ R2 with |ν| = 1, we have

|∂νu(z)| ≤ 2
r

max
∂Dr(z)

|u|.

If in addition u ≥ 0 in D̄r(z), we have

|∂νu(z)| ≤ 2
r
u(z).

Proof. Since ∆u = 0 and u is smooth, we have ∆∂νu = 0 in Ω, i.e., ∂νu ∈ Har(Ω). Using the
mean value property and the divergence theorem, we get

∂νu(z) =
1
πr2

∫
Dr(z)

∂νu(w)dw =
1
πr2

∫ 2π

0
u(z + r cis θ)(ν · cis θ)rdθ.

Now if u ≥ 0, since the inner product |ν · cis θ| ≤ 1, we infer

∂νu(z) ≤ 1
πr

∫ 2π

0
u(z + r cis θ)dθ =

1
πr
· 2πu(z).

On the other hand, for general u, we have

|∂xu(z)| ≤ 1
πr

max
∂Dr(z)

|u| · 2π =
2
r

max
∂Dr(z)

|u|.

�

The following can be called the Liouville theorem for harmonic functions.

Corollary 9. If u ∈ Har(R2) is bounded above or bounded below, then u is constant.
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Proof. If u ≥ a for some constant a ∈ R, then set v = u − a, or if u ≤ b for some constant
b ∈ R, then set v = b − u. In either case, we have v ≥ 0 and v ∈ Har(R2). Now let z ∈ R2

and apply the above theorem to v, inferring

|∂νv(z)| ≤ 2
r
v(z), for any r > 0,

which gives ∂νv ≡ 0 in any direction ν. �

Now we estimate higher derivatives.

Corollary 10. Let u ∈ Har(Ω) and D̄r(z) ⊂ Ω. Then for j, k ≥ 0 and n = j + k, we have

|∂jx∂kyu(z)| ≤ 2nnn

rn
max
D̄r(z)

|u|.

Proof. We prove it only for k = 0, since the general case is completely analogous. All the
derivatives ∂mx u are harmonic, so with ρ = r/n, we have

|∂nxu(z)| ≤ 2
ρ

max
D̄ρ(z)

|∂n−1
x u| ≤ . . . ≤

(
2
ρ

)n
max
D̄nρ(z)

|u|,

which is what we need. �

4. Analyticity

Let us recall the Taylor theorem for two variables, with a somewhat simplified hypothesis
on the smoothness of the function involved.

Theorem 11. Let f ∈ Cn(D̄r(z)), and h = (h1, h2) ∈ Dr(0). Then we have

f(z + h) =
∑
j+k<n

∂jx∂kyf(z)
j!k!

hj1h
k
2 +

∑
j+k=n

Rj,k(z)h
j
1h
k
2,

with the following estimate on the error term

|Rj,k(z)| ≤ sup
w∈D̄r(z)

∣∣∣∣∣∂
j
x∂kyf(w)
j!k!

∣∣∣∣∣ .
Definition 12. A function f ∈ C∞(Ω) is called (real) analytic at z ∈ Ω if the following
Taylor series converges in a neighbourhood of z.

f(z + h) =
∞∑
j=0

∞∑
k=0

∂jx∂kyf(z)
j!k!

hj1h
k
2.

Moreover, f is said to be (real) analytic in Ω if it is analytic at each z ∈ Ω. The set of analytic
functions in Ω is denoted by Cω(Ω).

Theorem 13. Har(Ω) ⊆ Cω(Ω).

Proof. Let Dr(z) ⊂ Ω and ρ ∈ (0, r). Then we have

|Rj,k(z)| ≤ sup
D̄ρ(z)

∣∣∣∣∣∂
j
x∂kyu

j!k!

∣∣∣∣∣ ≤ 2nnn

j!k!(r − ρ)n
max
D̄r(z)

|u|

Using the crude bounds
(
n
j

)
≤ 2n and nn ≤ enn!, we get

2nnn

j!k!
=
(
n

j

)
2nnn

n!
≤ 4nen,
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and with this in mind, for |h| ≤ ρ the Taylor remainder term can be estimated as

|Rj,k(z)hj1h
k
2| ≤

(
4eρ
r − ρ

)n
max
D̄r(z)

|u|.

We see that the Taylor series converges in Dρ(z) whenever ρ < r
4e+1 . �

As a consequence of analyticity, we have the following rigidity that is typical in analytic
setting. What is remarkable is that there is no condition on the size of D relative to Ω; we
only need D nonempty and open.

Theorem 14 (Identity theorem). Let u ∈ Har(Ω) with Ω a connected open set, and let u ≡ 0
in an open subset D ⊂ Ω. Then u ≡ 0 in Ω.

Proof. Each Σj,k = {z ∈ Ω : ∂jx∂kyu(z) = 0} is closed, so the intersection Σ =
⋂
j,k Σj,k is also

closed. But Σ is also open, because z ∈ Σ implies that u ≡ 0 in a small disk centred at z by
a Taylor series argument. Since Σ is nonempty by hypothesis, we conclude that Σ = Ω. �

The following corollary records the fact that a harmonic function is completely determined
by its restriction to any open subset of its domain of definition. In other words, if it is at
all possible to extend a harmonic function (defined on an open set) to a bigger domain, then
there is only one way to do the extension.

Corollary 15. Let u, v ∈ Har(Ω) with Ω a connected open set, and let u ≡ v in an open
subset D ⊂ Ω. Then u ≡ v in Ω.


