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Complex analysis is a standard part of any math curriculum. Less known is the intense
connection between the pure complex analysis and fluid dynamics. In this project we try
to give an insight into some of the interesting applications that exist.

1. THE JOUKOWSKY AIRFOIL

1.1. Introduction. The theory of complex variables comes in naturally in the study of
fluid phenomena. Let us define

w=¢+iy
with ¢ the velocity potential and y the Lagrange stream function. Then w turns out to be
analytic because the Cauchy-Riemann conditions
do Jdy a¢ dy
szi:i, vyziz—i
dx dy dy dx
are exactly the natural flow conditions that have to be satisfied. The function w is called
the complex velocity potential. Also note that
dw _
dz

Basic examples of velocity potentials are the uniform stream w = Uz where U represents

Ve — vy,

flow speed and the vortex w = (—iI'/2m)In(z) where I represents rotation speed counted
counterclockwise. An important role is dedicated to transformations F that are angle-
preserving or conformal. Because compositions of analytic functions are analytic, we can
use transforms to map simple cases onto harder ones.

1.2. Flow past a cylinder. Let us include circulation and look at the circular cylindrical
case. We omit viscosity and other effects. One can write
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for the velocity potential of a flow past a circular cylinder. Here a is the diameter of the
cylinder, U the flow speed and I” a vortex related parameter as discussed earlier. The latter
term was added to account for lift effects. It is put in artificially here but will come natu-
rally later on.



It is easy to check that w(aexp (i0)) is real so that y = 0 on the circle and that dw/dz goes
to U for z at infinity. Stagnation points for the flow are at the point z such that dw/dz = 0.
If G is sufficiently small, we can define sin(f) = G =T'/4ma|U| and U = |U|exp (—ia)
so that the stagnation points are located at

Zdownstream — A €XP (*i(OC + B))a Zupstream = A €XP (*i(a - B - 77:))
One can prove the force on the cylinder per unit distance lengthwise is
F =ipI'U.

This is perpendicular to flow direction.

A conformal map called the Joukowsky transform can be used to find the flow past an
elliptical cylinder. It is defined by

b2

/
z7=z+—.

Z
Here b is a real number. Applying this transform to a circle radius a will get an ellipse
with major axis a + b?/a and minor axis a — b*/a. The flow problem can be solved more
easily using this transform and our knowledge about the circular case.

1.3. The Joukowsky airfoil. Using a conformal mapping one can map the circle to a spe-
cific kind of airfoil shape called the Joukowsky airfoil. The general airfoil shape is round
in the front and sharp in the back. At the sharp trailing edge the mapping will not be con-
formal. So to obtain the desired shape one has to produce a sequence of transformations.
If we start off with a circle z in the complex plane we first translate it away from the origin
by z. by writing. Then we transform to

using the Joukowsky transform. The resulting effect on the derivative is

dw dwdz dZ dw 7?

d’  dzdZdz”  dz 22 —b%
Note that the velocity in the 7 coordinate system will be singular when 7’ = +b. The only
way for this to be prevented is by guaranteeing either of these points to be a stagnation

point. Let us say that
b.

2. +aexp (i(a—B))

Additionally require the other point —b to lie inside the circle.
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FIGURE 1. A Karman-Trefftz family of airfoils.



The general shape of the Joukowsky airfoil can now be determined. It turns out o ex-
presses attack angle, x. thickness and y'. camber! of the airfoil. The parameters a and |U|
can be normalized. One can compute given these numbers

B=a+sin' (), b=x.+\/1-y;

and
I'=4rsinf.

Plots can be found in figures 1(a) and 1(c). Furthermore, the behavior at the trailing edge
leads to important results in fluid mechanics about circulation of which one is known as
the Kutta condition. The Kutta condition is responsible for the circulation that is necessary
for the wing to create lift
2
U

1.4. The Karman-Trefftz airfoil and others. The Joukowsky transform above can be
rewritten by completing the square. Obtained is
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or equivalently
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Von Karman and Trefftz looked at a more general transformation satisfying

Z'+2b  (Z+Db\"
Z//_2b_ 7 —b :

It has most of the characteristic of the Joukowsky but the added parameter n allows to
adjust the trailing edge angle to (2 —n)m. An example with trailing edge angle 45° is
found in figure 1(b). The somewhat artificial trailing edge shape of the Joukowsky airfoil
is resolved.

Interesting other generalizations are the Jones-McWilliams airfoil and the NACA family
of airfoils.

lCamber expresses the measure of asymmetry between the upper and lower surface of the airfoil.



2. VORTEX SHEDDING AND THE VON KARMAN STREET

Let us consider the flow of a fluid around an object in the plane. In general vortices will
be shed from the edges of the object into its wake. This chain of shed vortices is called
a vortex street. The pattern of the vortices in the street usually starts off symmetrical
but shifts to be alternating. An interesting topic of study is the mechanism behind this
phenomenon.

2.1. Von Karman vortex street. Let us model the vortex street by two rows of vortices
spaced b apart in the y-direction. The vortices at y = b/2 are rotating counterclockwise
and located at

..,—2a,—a,0,a,2a,...
in the x-direction. The lower row of vortices is rotating clockwise and is offset pa from
the upper one. So each core is located at

...,—2a+Ua,—a+ Ua,la,a+ Ua,2a+ Ua,. ..

This simple model is known as the Von Karman vortex street. The variable U is a offset
parameter. The case i = 0 represents symmetry while g = 1/2 represents the alternating
pattern. The complex velocity potential can be found from the elementary vortex potential
defined in the introduction. A vortex in the upper row can be expressed as
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with n € Z. The lower row is expressed similarly by
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The vortex street potential then equals

TR B () e (o))

The advantage of using complex variables is immediately clear. We can rewrite the infinite
sum of logarithms as a logarithm of an infinite product. Thus we obtain

W= ;lr lln (Sinﬂ?(212)> “In (Sinﬂ«'(Z,lMH‘lz))] _
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The associated complex conjugate velocity potential is
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The velocity in the fluid caused by the upper and lower row of vortices is denoted with
Vipper and Viower respectively.

2.2. Evolution and stability. Because of symmetry, vortices in the upper row do not
produce a net force on each other and vortices in the lower row do not produce a net
force on other vortices in the lower row. However, there is an effect on the vortices in the

opposite row. The effect of the lower row of vortices on the vortex at z = ig for example

Vi 0 —Ecotn b
lower 12 = 24 la nj.

Note that this velocity is in general not pointed purely in the horizontal direction. Conse-

is described by

quently, the shed vortex rows will tend to drift laterally towards or away from each other.
Experimentally one can observe this drifting effect to be nearly nonexistent. Therefor we
will choose to kill off the drifting effect by selecting i such that Vigyer (i %) € R. The rel-
evant values of i can be computed by rewriting the cotangent as a quotient of cosine and
sine and expressing these on their turn in exponentials. The outcome is that the velocity
can be real only when
sin2urx =0

or equivalently when p = 0 or u = 1/2. This means that the symmetrical and alternating
patterns arise naturally. A next logical step is to look at the stability of both of these cases.
The complete calculation is not done here because it is quite lengthy, but it relies heavily
on complex analysis. The symmetrical arrangement is found to be unstable for at least
some possible perturbations. The u = 1/2 case is more stable as long as b/a ~ 0.28055.
This defines a stable ratio for the distance between the vortex rows and the vortices per
row.

3. CHRISTOFFEL TRANSFORMATION

The Riemann Mapping Theorem proves existence of holomorphic maps from random do-
mains to the unit circle. A practical construction for these maps however is not given.
For polygonal domains one can explicitly construct a mapping. This mapping is known as
the Schwarz-Christoffel tranformation and it maps the interior of a closed polygon to the
upper or lower half plane. A classical example of a fluid mechanical problem that profits
from a treatment with the Christoffel transform is the flow in a channel over a step.

Assume we have some region D in the complex plane C bounded by a polygon with
vertices at wi,wy,...,w, (in counter clockwise direction) and respective interior angles
O\, T, ..., @,7. Let f be a conformal mapping from the upper half plane to D. We call
2 = [~ (wy) the pre-vertex of wy. All z; are real. Furthermore, let us assume that z,, = co.



Note that if this is not the case, one can simply add the corresponding vertex with angle &
to the list of wy It turns out that under these assumptions

@ =a [ (=)~ a +p.

0

Here « and f3 are free parameters and as a consequence 7o is chosen at random. Evidently
flR)=az—u)" " (z—z)"".

There remains an obvious problem however. Because f is not known, the pre-vertices z;
are in general not known either. It turns out that in most regular cases the pre-vertices can
be computed quite easily. For example for the channel with a single step one has four wy.
Without loss of generality z4 = 0. We can choose z; = 0 and zz = 1 as we wish. Only 2,
then needs to be determined and the parameter &. This can be done by using what extra
information is known about the geometrical properties of the region D. For the problem at
hand z, can be found after about a page of work.
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The main sources used were Elementary fluid mechanics by Acheson, Advanced fluid me-
chanics by Graebel and Complex analysis in Mathematica by Shaw. Our knowledge of
the theories presented has significantly improved in the last fifty years or so. For example
the Von Karman model is now considered obsolete. Moreover, while reading up for this
project I came across several interesting topics in complex analysis somewhat relevant to
my own domain of research. So the time was very well spent.



