
BASIC COMPUTER ARITHMETIC

TSOGTGEREL GANTUMUR

Abstract. First, we consider how integers and fractional numbers are represented and
manipulated internally on a computer. The focus is on the principles behind the algorithms,
rather than on implementation details. Then we develop a basic theoretical framework for
analyzing algorithms involving inexact arithmetic.

Contents

1. Introduction 1
2. Integers 2
3. Simple division algorithms 6
4. Long division 11
5. The SRT division algorithm 16
6. Floating point numbers 18
7. Floating point arithmetic 21
8. Propagation of error 24
9. Summation and product 29

1. Introduction

There is no way to encode all real numbers by using finite length words, even if we use an
alphabet with countably many characters, because the set of finite sequences of integers is
countable. Fortunately, the real numbers support many countable dense subsets, and hence
the encoding problem of real numbers may be replaced by the question of choosing a suitable
countable dense subset. Let us look at some practical examples of real number encodings.

● Decimal notation. Examples: 36000, 2.35(75), −0.000072.
● Scientific notation. Examples: 3.6 ⋅104, −72 ⋅10−6. The general form is m ⋅10e. In order
to have a unique (or near unique) representation of each number, one can impose a
normalization, such as requiring 1 ≤ ∣m∣ < 10.
● System with base/radix β. Example: m2m1m0.m−1 =m2β

2+m1β+m0+m−1β−1. The
dot separating the integer and fractional parts is called the radix point.
● Binary (β = 2), octal (β = 8), and hexadecimal (β = 16) numbers.
● Babylonian hexagesimal (β = 60) numbers. This format is “true floating point,” in
the sense that no radix point is used, but the position of the radix point is inferred
from context. For example, 46 ∶ 2 ∶ 16 = (46 ⋅ 602 + 2 ⋅ 60+ 16) ⋅ 60k where k is arbitrary.
● Mixed radix. Example: 13(360)10(20)3 = 13 ⋅ 360 + 10 ⋅ 20 + 3 (Mayan calendar format).

● Rationals: p
q , p ∈ Z, q ∈ N, q ≠ 0. This builds on a way to represent integers.

● Continued fraction: [4; 2,1,3] = 4 + 1
2+ 1

1+ 1
3

.

● Logarithmic number systems: bx, where x ∈ R is represented in some way.
● More general functions:

√
2, e2, sin 2, arctan1.

Date: May 7, 2018.
1



2 TSOGTGEREL GANTUMUR

As history has shown, simple base-β representations (i.e., place-value systems) seem to be
best suited for general purpose computations, and they are accordingly used in practically all
modern digital computing devices. Inevitably, not only real numbers must be approximated
by fractional numbers that are admissible on the particular device, but also the operations
on the admissible numbers themselves should be approximate. Although the details of how
fractional numbers are implemented may vary from device to device, it is possible to formulate
a general set of assumptions encompassing practically all implementations, which are still
specific enough so as not to miss any crucial details of any particular implementation.

In what follows, we first describe how integers and fractional numbers are handled on ma-
jority of modern computing devices, and will then be naturally led to the aforementioned
set of assumptions, formulated here in the form of two axioms. Once the axioms have been
formulated, all the precursory discussions become just one (albeit the most important) exam-
ple satisfying the axioms. Finally, we illustrate by examples how the axioms can be used to
analyze algorithms that deal with real numbers, which gives us an opportunity to introduce
several fundamental concepts of numerical analysis.

2. Integers

Given a base (or radix) β ∈ N, β ≥ 2, any integer a ∈ Z can be expressed as

a = ±
∞
∑
k=0

akβ
k, (1)

where 0 ≤ ak ≤ β − 1 is called the k-th digit of a in base β. The digits can also be thought of
as elements of Z/βZ, the integers modulo β. Obviously, each integer has only finitely many
nonzero digits, and the digits are uniquely determined by a. More precisely, we have

ak = ⌊
∣a∣
βk
⌋ mod β, (2)

where ⌊x⌋ =max{n ∈ Z ∶ n ≤ x} is the floor function.
In modern computers, we have β = 2, i.e., binary numbers are used, mainly because it

simplifies hardware implementation. Recall that one binary digit is called a bit. At the
hardware level, modern CPU’s handle 64 bit sized integers, which, in the nonnegative (or
unsigned) case, would range from 0 to M −1, where M = 264 ≈ 18 ⋅1018. Note that in embedded
systems, 16 bit (or even 8 bit) microprocessors are more common, so that M = 216 = 65536.
There are several methods to encode signed integers, with the most popular one being the
so called two’s complement. This makes use of the fact that M − a ≡ −a mod M and hence
M − a behaves exactly like −a in the modulo M arithmetic:

(M − a) + b =M + b − a ≡ b − a mod M,

(M − a) ⋅ b =Mb − ab ≡ −ab mod M,

(M − a) ⋅ (M − b) =M2 −M(a + b) + ab ≡ ab mod M,

(M − a)b + r = c ⇐⇒ −ab + r ≡ c mod M, etc.

(3)

Thus for the 64 bit architecture, the signed integers would be Z̃ = {−263, . . . ,263−1}, where the
numbers 263, . . . ,264 − 1 are internally used to represent −263, . . . ,−1. Note that 263 ≈ 9 ⋅ 1018.
Within either of the aforementioned signed and unsigned ranges, each arithmetic operation
takes a few clock cycles, with the multiplication and division being the most expensive. Hence
it makes sense to measure the complexity of an algorithm by how many multiplication and
division operations it needs to execute (unless of course the algorithm has disproportionately
many addition and/or subtraction, in which case the relevant operations would be those). If



COMPUTER ARITHMETIC 3

the result of an operation goes out of the admissible range, a flag (or exception) called integer
overflow would be raised. The other type of error one should watch out for is division by zero.

bits

co
st

64

∞

Figure 1. The fixed length of standard integers can be modelled by assign-
ing infinite cost to any operation associated to integers longer than the stan-
dard size (red curve). For platforms that can handle arbitrarily large integers
(bignums), the cost of each arithmetic operation grows depending on the length
of the input variables (blue curve).

Integers outside of the usual ranges are called bignums, and can be handled in software by
representing them as arrays of “digits,” where a single “digit” could now hold numbers up to
∼264 or ∼106 etc., since the digit-by-digit operations would be performed by the built-in arith-
metic. In other words, we use (1) with a large β. There is no such thing as “bignum overflow,”
in the sense that the allowed size of a bignum would only be limited by the computer memory.
Programming languages such as Python, Haskell, and Ruby have built-in implementations of
bignum arithmetic. Obviously, the complexity of an algorithm involving bignum variables will
depend on the lengths of those bignum variables. For example, addition or subtraction of two
bignums of respective lengths n and m has the complexity of O(n+m) in general. This type
of complexity measure is usually called bit complexity.

+

1 1 1

7 7 2 5

5 3 0 8

1 3 0 3 3

− 1

1

1 2 8 6

4 7 3

8 1 3

4 6 5 3

2 0 7

3 2 5 7 1

9 3 0 6 ⋅
9 6 3 1 7 1

×
4 3 8

−
3 4

9 8
−

8 5

1 3

1 7

2 5

Figure 2. Illustration of the grade school algorithms.

When two integers are given by their digits, elementary arithmetic operations can be per-
formed by employing the usual algorithms that we learn in grade school. This is relevant
to both built-in and bignum arithmetics. First, we can reduce the general case into a case
where the two integers are nonnegative. Then the digits of the sum s = a + b are given by the
recurrent relation

ckβ + sk = ak + bk + ck−1, k = 0,1, . . . , (4)



4 TSOGTGEREL GANTUMUR

where 0 ≤ sk ≤ β − 1, and c−1 = 0. Since a0 + b0 ≤ β + (β − 2), we have c0 ≤ 1, and by induction,
all the “carry digits” satisfy ck ≤ 1. The digit-wise operations such as (4) are performed
either by elementary logic circuits in case our goal is the built-in arithmetic, or by the built-in
arithmetic in case we are talking about implementing a bignum arithmetic.

To compute the difference d = a − b, we can always assume a ≥ b, and the digits of d are

dk = ckβ + ak − bk − ck−1, k = 0,1, . . . , (5)

where the “borrowed digits” ck are uniquely determined by the condition 0 ≤ dk ≤ β − 1, and
c−1 = 0. It is straightforward to show that 0 ≤ ck ≤ 1.

Addition and subtraction can also be treated simultaneously as follows. First, we introduce
the intermediate representation, which we call the Cauchy sum or difference:

a ± b =
∞
∑
k=0

x∗kβ
k, (6)

with x∗k = ak ± bk ∈ {1 − β, . . . ,2β − 2}. This is not a standard representation because we may
have x∗k < 0 or x∗k > β − 1. The true digits of x = a ± b can be found from

ckβ + xk = x∗k + ck−1 k = 0,1, . . . , (7)

where the integers ck ∈ {−1,0,1} are uniquely determined by the condition 0 ≤ xk ≤ β − 1, and
c−1 = 0. As long as we ensure that both numbers are nonnegative, and that a ≥ b in case of
subtraction, the result will have an expansion with finitely many nonzero digits.

To multiply two positive integers, we first define the Cauchy product

ab = (
∞
∑
j=0

ajβ
j) ⋅ (

∞
∑
i=0

biβ
i) =

∞
∑
k=0
(

k

∑
j=0

ajbk−j)βk =
∞
∑
k=0

p∗kβ
k, (8)

where

p∗k =
k

∑
j=0

ajbk−j , (9)

is the k-th generalized digit of ab. In general, p∗k can be larger than β − 1, and so (8) is not
the base-β expansion of the product ab. However, the proper digits 0 ≤ pk ≤ β − 1 of ab can
be found by

ckβ + pk = p∗k + ck−1 k = 0,1, . . . , (10)

where c−1 = 0. One way to find the base-β expansion of p∗k would be to do the summation in
(9) from the beginning in base-β arithmetic.

Preceding algorithm generates the digits of the product ab directly, i.e., it implements the
grade school algorithm column-wise. We can also approach it row-wise, as

ab = (
n

∑
j=0

ajβ
j) ⋅ b =

n

∑
j=0

aj ⋅ βjb, (11)

where βjb can be produced by simple shifts, and multiplication by the single digit aj can be
implemented in terms of additions and shifts. The radix-2 case (β = 2) is especially simple:
Set π0 = 0, and for j = 0, . . . , n, perform

πj+1 =
⎧⎪⎪⎨⎪⎪⎩

πj if aj = 0,
πj + 2jb if aj = 1.

(12)

Then the final result πn+1 is equal to the product ab. So an adder (in combination with bit
shifts) is all one needs in order to implement this algorithm.



COMPUTER ARITHMETIC 5

We can write the same process, starting with the most significant bit, instead of the least
significant one, as follows. Let π0 = 0, and for j = 0, . . . , n, let

πj+1 =
⎧⎪⎪⎨⎪⎪⎩

πj if an−j = 0,
πj + 2n−jb if an−j = 1.

(13)

The intermediate results πj are called partial products or interim products. The recurrence
(13) has a nice graphical representation, see Figure 3 (left). We will not discuss accelerated
hardware implementations of the aforementioned addition and multiplication algorithms, as
it would open a whole other can of worms.

a2n 2n+1

y = bx
+2nb

π1

+2n−3b

π4

a2n 2n+1

y = x2

+2
2n

σ1

+2n−2ξ3+22(n−3)

σ4

Figure 3. Binary multiplication and bit-wise squaring.

Before closing this section, we present an algorithm to compute the square a2, that reads
the bits of a one by one. Let ξj denote the number formed by nullifying n+1−j least significant
bits of a. For example, if a = 1101 and so n = 3, then ξ0 = 0, ξ1 = 1000, ξ2 = ξ3 = 1100, and
ξ4 = 1101. Supposing that the partial square ξ2j has been computed, and that aj = 1, we have
the update formula

ξ2j+1 = (ξj + 2n−j)2 = ξ2j + 2 ⋅ 2n−j ⋅ ξj + 22(n−j), (14)

which leads to the following algorithm. Set σ0 = ξ0 = 0, and for j = 0, . . . , n, perform

(σj+1, ξj+1) =
⎧⎪⎪⎨⎪⎪⎩

(σj , ξj) if an−j = 0,
(σj + 2n+1−jξj + 22(n−j), ξj + 2n−j) if an−j = 1.

(15)

The process is illustrated in Figure 3 (right). Notice the similarities between (13) and (15).
Although one would probably never implement (15) in practice, it hints at a general class of
algorithms for evaluating functions, based on addition laws, such as

f(x + 2−j) = f(x) + g(x,2−j), (16)

where g(x,2−j) is easily computable, either directly or from tabulated values. This class of
algorithms usually goes under the name pseudo-multiplications.



6 TSOGTGEREL GANTUMUR

As discussed, the bit complexity of addition and subtraction is O(n +m + 1), where
n =max{k ∶ ak ≠ 0}, m =max{k ∶ bk ≠ 0}. (17)

Note that “+1” is introduced into O(. . .) because according to the way n and m are defined,
the lengths of a and b are n+1 and m+1, respectively. On the other hand, it is easy to see that
the same for our multiplication algorithm is O(nm + 1). In fact, there exist asymptotically
much faster multiplication algorithms such as the Karatsuba algorithm and the Schönhage-
Strassen algorithm, with the latter having the bit complexity of O(n +m + 1) up to some
logarithmic factors.

3. Simple division algorithms

Now we turn to division. Generally, the exact quotient of two integers is a fractional
number. One can stop the division process at any stage, and return the approximate quotient
and the remainder. It will be convenient to assume that the quotient is expanded as

q = q0 + q−1β−1 + q−2β−2 + . . . , (18)

where 0 ≤ qj < β are the digits. Some division algorithms use generalized digits that satisfy a
more relaxed condition such as −β < qj < β, cf. (6) and (8). In order to have the quotient in
the above form, we assume that a and b are positive and normalized, such that

a = a0 + a−1β−1 + a−2β−2 + . . . , b = b0 + b−1β−1 + b−2β−2 + . . . , (19)

with a0 > 0 and b0 > 0, that is, we assume that 1 ≤ a < β and 1 ≤ b < β. This normalization can
be achieved by pre-scaling, and one needs to do the corresponding adjustments to the final
quotient after the division has been done.

Restoring division. The division algorithms we discuss here are only effective for small
values of the radix β, and for simplicity, we consider the case β = 2 first. The first algorithm
is called the restoring division, and works as follows. We compute a − b, and if a − b ≥ 0, then
we set q0 = 1 and a′ = a − b. In this case, since a < 2 and b ≥ 1, we have a′ = a − b < 1 ≤ b. On
the other hand, if a− b < 0, then we set q0 = 0 and a′ = a. In this case, we also have a′ = a < b.
Now we apply the same process to a′ and b′ = 1

2b, to compute the digit q−1. This process
is repeated until the partial remainder becomes small enough. More formally, the algorithm
sets α0 = a, and for j = 0,1, . . ., performs

(αj+1, q−j) =
⎧⎪⎪⎨⎪⎪⎩

(αj − 2−jb,1) if αj − 2−jb ≥ 0,
(αj ,0) if αj − 2−jb < 0.

(20)

The quantities αj are called partial remainders. The process is illustrated in Figure 4(a).
We have 0 ≤ α0 = a < 2 ≤ 2b. Taking 0 ≤ αj < 21−jb as the induction hypothesis, we have

0 ≤ αj+1 = αj − 2−jb < 21−jb − 2−jb = 2−jb, (21)

for the first branch of (20), while for the second branch 0 ≤ αj+1 = αj < 2−jb holds trivially.
By construction, we have

αj = q−j2−jb + αj+1, (22)

and so

a = α0 = q0b + α1 = q0b + q−12−1b + α2 = . . .
= q0b + q−12−1b + . . . + q−n2−nb + αn+1

= qb + αn+1,

(23)

where q = q0 + q−12−1 + . . . + q−n2−n. In light of the bound 0 ≤ αn+1 = αj < 2−nb, this implies

0 ≤ a

b
− q < 2−n, (24)

https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Schonhage-Strassen_algorithm
https://en.wikipedia.org/wiki/Schonhage-Strassen_algorithm


COMPUTER ARITHMETIC 7

meaning that the digits of q are precisely the first n + 1 digits of the quotient a/b.
Since the algorithm generates one correct bit per step, it terminates after n steps, where n is

how many quotient digits we need. Furthermore, each step costs us a bit shift, a subtraction,
and a comparison operation.

21

a

a− bx

α1

−b

α3

−2
−2
b

(a) q = 101001 . . . (radix point omitted).

21

a

a− bx

α1

−b

α2

(b) q = 111̄11̄1̄ . . ., where 1̄ = −1.

Figure 4. Restoring and non-restoring divisions.

In practical implementations of (20), it is more convenient to scale up the partial remain-
ders, than to scale down the divisor. Thus, putting αj = 2−jrj into (20), we get the recurrence

(rj+1, q−j) =
⎧⎪⎪⎨⎪⎪⎩

(2(rj − b),1) if rj − b ≥ 0,
(2rj ,0) if rj − b < 0.

(25)

for j = 0,1, . . .. On the other hand, the scaling αj = 21−jrj would give

(rj+1, q−j) =
⎧⎪⎪⎨⎪⎪⎩

(2rj − b,1) if 2rj − b ≥ 0,
(2rj ,0) if 2rj − b < 0,

(26)

for j = 0,1, . . ., which is more standard in the literature. Note that in the latter case, the
initialization becomes r0 = 2−1a (or equivalently, b is replaced by 2b). If one computes the
difference 2rj −b and overwrites its value into 2rj , then in case 2rj −b < 0, one has to “restore”
the value 2rj by adding b back. This is the reason for the name “restoring division.”

Non-restoring division. The point of the restoring step is of course to prevent the partial
remainders from becoming negative. If we skip a restoring step, therefore allowing negative
partial remainders, then the subsequent iterations of the division process must try to drive
the partial remainders to 0, by adding multiples of b. This idea is graphically illustrated in
Figure 4(b). A way to record the fact that we added a multiple of b to the current partial
remainder, as opposed to subtracting, is to set the corresponding quotient digit to −1. In other
words, instead of the standard bits qj ∈ {0,1}, we now have the generalized digits qj ∈ {−1,1},



8 TSOGTGEREL GANTUMUR

and a conversion to the standard binary representation is needed as a post-processing step.
This leads to the following recurrence. Let α0 = a, and let

(αj+1, q−j) =
⎧⎪⎪⎨⎪⎪⎩

(αj − 2−jb,1) if αj ≥ 0,
(αj + 2−jb,−1) if αj < 0,

(27)

for j = 0,1, . . .. The analysis follows exactly the same lines as that of the restoring division.
First, since 1 ≤ a, b < 2, we have −2b < α0 = a < 2 ≤ 2b. Now, taking −21−jb ≤ αj < 21−jb as the
induction hypothesis, we infer

−2−jb ≤ αj+1 = αj − 2−jb < 21−jb − 2−jb = 2−jb if αj ≥ 0,
2−jb > αj+1 = αj + 2−jb ≥ −21−jb + 2−jb = −2−jb if αj < 0,

(28)

which shows that −21−jb ≤ αj < 21−jb for all j. By construction, we have

αj = q−j2−jb + αj+1, (29)

and so

a = α0 = q0b + q−12−1b + . . . + q−n2−nb + αn+1 = qb + αn+1, (30)

where q = q0 + q−12−1 + . . . + q−n2−n. Then from αn+1 = a
b − q, we deduce

0 ≤ a
b − q < 2

−n, if αn+1 ≥ 0, (31)

2−n ≤ a
b − q < 0, if αn+1 < 0. (32)

Therefore, if αn+1 ≥ 0, then the digits of q are the first n + 1 digits of the quotient a/b. If
αn+1 < 0 then the simple modification q′ = q − 2−n satisfies

0 ≤ a
b − q

′ < 2−n, (33)

and hence q′ yields the first n + 1 digits of a/b.
For a practical implementation, the scaling αj = 21−jrj gives

(rj+1, q−j) =
⎧⎪⎪⎨⎪⎪⎩

(2rj − b,1) if rj ≥ 0,
(2rj + b,−1) if rj < 0,

(34)

for j = 0,1, . . ., with the initialization r0 = 2−1a. To compute the standard binary representa-
tion of q, we can simply separate the generalized digits qj according to qj = 1 or qj = −1, and
subtract. More precisely, let q+j =max{qj ,0}, and q−j =max{−qj ,0}, and let

q+ = q+0 + q+−12−1 + . . . + q+−n2−n,
q− = q−0 + q−−12−1 + . . . + q−−n2−n.

(35)

Then q = q+ − q−. For example, omitting the radix point, if the generalized digits of q
generated by (34) are q = 111̄11̄1̄, where 1̄ = −1, then q+ = 110100 and q− = 001011, and
so q = q+ − q− = 101001, cf. Figure 4. Since either qj = 1 or qj = −1, we always have q+j + q−j = 1,
which implies that q+ + q− = 2n+1 − 1, after a scaling. Thus we have

q = q+ − q− = q+ − (2n+1 − 1 − q+) = 2q+ + 1 − 2n+1 = 2q+ + 1 (mod 2n+1), (36)

that is, q is simply a bit shift (to the left) of q+, with the spill-over bit beyond the position n
discarded, and the least significant bit set to 1. For the aforementioned example q+ = 110100,
writing 1 on the right of it, we have 1101001, and removing the leftmost bit, we get q = 101001.
This suggests a strategy to find the standard bits of q directly within the algorithm, by looking
ahead at the sign of rj+1, instead of the current partial remainder rj . Moreover, supposing
that q has been converted into its standard binary representation, note that the modification



COMPUTER ARITHMETIC 9

q′ = q−2−n in (33) is simply a matter of setting q−n = 0. Therefore, this step can be interpreted
as shifting the (implicit) bit q+−n−1 to the left. All in all, we conclude that the recurrence

rj+1 =
⎧⎪⎪⎨⎪⎪⎩

2rj − b if rj ≥ 0,
2rj + b if rj < 0,

q−j =
⎧⎪⎪⎨⎪⎪⎩

1 if rj+1 ≥ 0,
0 if rj+1 < 0,

(37)

for j = 0,1, . . . computes the digits of the quotient 2r0/b, provided 1 ≤ 2r0, b < 2.

General radix. In principle, it is not hard to generalize the aforementioned division algo-
rithms to any radix β. For restoring division, the partial remainders are given by

rj+1 = βrj − q−jb, j = 0,1, . . . , (38)

where the quotient digits satisfy

q−j = ⌊
βrj

b
⌋ , (39)

see Figure 5. A straightforward approach to determine q−j is to subtract multiples of b from
βrj , until it is in the range [0, b). For example, in the case β = 4, it involves computing βrj −b,
βrj − 2b, and βrj − 3b. In general, this approach can be arranged to that the quotient digit is
determined in approximately log2 β additions/subtractions and comparison operations.

ri

ri+1

β
r i

β
r i
−
b

β
r i
−
2
b

β
r i
−
3
b

b

b

(a) Given the partial remainder ri, the quo-
tient digit q−i is chosen according to which of
the slanted lines falls inside the white square.
This ensures that the condition 0 ≤ ri < b is
preserved.

q = 0

q =
1

q
=
2

q
=
3

p =
b

p =
2b

p
=
3b

p
=
4
b

b

p

1 β

β

β2

(b) Dependence of the quotient digit q = q−i on
the partial remainder p = βri and the divisor
b. All possible combinations (b, p) are repre-
sented by the coloured trapezoidal area. The
red dots illustrate repeated subtractions of b in
a particular situation.

Figure 5. Radix-4 restoring division.

Returning to the analysis of (38), we have

r0 = β−1q0b + β−1r1 = β−1q0b + β−2q−1b + β−2r2 = . . .
= β−1q0b + β−2q−1b + . . . + β−nq−nb + β−n−1rn+1
= β−1qb + β−n−1rn+1,

(40)



10 TSOGTGEREL GANTUMUR

so that

βr0 = qb + β−nrn+1, with q = q0 + q−1β−1 + . . . + q−nβ−n. (41)

The assumptions 1 ≤ βr0 < β and 1 ≤ b < β guarantee that 0 ≤ rj < b and 0 ≤ q−j ≤ β − 1 for all
j, implying that

0 ≤ βr0
b
− q < β−n, (42)

i.e., the digits of q are in fact the first n + 1 digits of the quotient βr0/b.

ri

ri+1

β
r i
−
b

β
r i
−
3
b

β
r i
+
b

β
r i
+
3
b

−b b

(a) Given the partial remainder ri, the quo-
tient digit q−i is chosen according to which of
the slanted lines falls inside the white square.
This ensures that the condition −b ≤ ri < b is
preserved.

q = 1

q =
−1

q =
3

q
=
−

3

p =
2b

p =
−2b

p
=
4b

p
=
−

4b

b

p

1 β

β

β2

−β

−β2

(b) Dependence of the quotient digit q = q−i on
the partial remainder p = βri and the divisor b.
All possible combinations (b, p) are represented
by the coloured trapezoidal area. The red dots
illustrate additions/subtractions of 2b.

Figure 6. Radix-4 non-restoring division.

For non-restoring division, the recursion (38) still holds, but the quotient digit computation
is different from (39). Namely, negative digits are allowed, and the condition we want to
preserve is −b ≤ rj < b, as opposed to 0 ≤ rj < b. Let us discuss the details for the case β = 4.
One possibility is to allow the digits {±1,±3}, which will be sufficient to ensure −b ≤ rj+1 < b
provided that −b ≤ rj < b, cf. Figure 6. From the diagram, it is easy to see that

q−j = 2 ⌊
β(rj + b)

2b
⌋ − (β − 1). (43)

Of course, one would not use this formula in implementations; a simple method to find q−j
would involve computing the quantities βrj ± b, βrj ± 3b and checking if they are in the range
[−b, b). In the context of (43), if −b ≤ rj < b, then 0 ≤ β(rj+b) < 2βb, and so −(β−1) ≤ q−j ≤ β−1.
Moreover, substituting (43) into (38), we get

rj+1 = β(rj + b) − 2b ⌊
β(rj + b)

2b
⌋ − b, (44)



COMPUTER ARITHMETIC 11

which makes it clear that −b ≤ rj+1 < b. By scaling, we can always arrange 1 ≤ βr0 < β and
1 ≤ b < β, that is, β−1 ≤ r0 < 1 ≤ b < β, so that −b ≤ rj < b and −(β − 1) ≤ q−j ≤ β − 1 for all j.
Finally, the analysis (40) works here verbatim, which yields

βr0 = qb + β−nrn+1, with q = q0 + q−1β−1 + . . . + q−nβ−n, (45)

implying that

0 ≤ βr0
b − q < β

−n, if rn+1 ≥ 0, (46)

β−n ≤ βr0
b − q < 0, if rn+1 < 0. (47)

Analogously to the binary case, if rn+1 < 0 then the simple modification q′ = q − β−n would
give us the correct digits of the quotient.

As we have seen, the straightforward way of computing the quotient digits, cf. (39) and
(43), presents a bottleneck, even when the radix β is not so large. In the next 2 sections, we
will discuss the following approaches to deal with this problem.

● Use only a few digits of βrj and b to estimate q−j , and correct it (Long division).
● The same as above, but use the estimated digit without correcting (SRT division).

4. Long division

The restoring and non-restoring division algorithms work fine when the radix β, as well as
the lengths of a and b are moderate. However, they are not efficient especially for bignums,
where both the radix and the length of integers can be large. Even for built-in arithmetic,
it would be preferable to have some sort of parallelism between the computation of the next
partial remainder and the determination of the next quotient digit. In this section, we are
going to build an algorithm based on the usual long division algorithm we study in grade
school. What we have in mind here is mainly bignum division, but some of the discussions
will be relevant to the next section, where we study a more sophisticated division method for
built-in arithmetic.

Our goal is to compute the digits of q ≥ 0 and 0 ≤ r < b, satisfying

a = qb + r, (48)

that is, we focus on Euclidean division of two integers. Here and in what follows, unless
otherwise specified, all variables are integer variables. Without loss of generality, we can
assume that n ≥ m and a > b ≥ 2, where n and m are as defined in (17). By replacing b by
βn−mb, we could even assume n =m, but as we will see below, the cases m = 0 and m = 1 are
somewhat special, so we will treat n and m independently.

As a warm up, let us treat the special case m = 0 first. In this case, b has only one digit,
i.e., 2 ≤ b ≤ β − 1, so division can be performed in a straightforward digit-by-digit fashion.
This case is sometimes called “short division.” The first step of the division algorithm would
be to divide an by b, as

an = qnb + rn, (49)

where 0 ≤ rn < b is the remainder, and qn ≥ 0 is the quotient. Obviously, qn ≤ β − 1 because
an ≤ β − 1. Computation of qn and rn should be performed in computer’s built-in arithmetic.
To proceed further, we combine rn with the (n − 1)-st digit of a, and divide it by b, that is,

rnβ + an−1 = qn−1b + rn−1, (50)

where 0 ≤ rn−1 < b. Since rn < b, we are guaranteed that qn−1 ≤ β − 1. For bignum arithmetic,
computation of qn−1 and rn−1 should be performed in computer’s built-in arithmetic, and
since this involves division of the 2-digit number rnβ + an−1 by the 1-digit number b, 2-digit



12 TSOGTGEREL GANTUMUR

numbers must be within the reach of the built-in arithmetic. More precisely, we need β2 ≤M .
This procedure is repeated until we retrieve the last digit a0, and we finally get

a = anβn + . . . + a0 = (qnb + rn)βn + an−1βn−1 + . . . + a0
= qnbβn + (rnβ + an−1)βn−1 + . . . + a0
= qnbβn + (qn−1b + rn−1)βn−1 + . . . + a0 = . . .
= qnbβn + qn−1bβn−1 + . . . + q0b + r0

= b
n

∑
k=0

qkβ
k + r0,

(51)

which shows that qk is the k-th digit of q, and that r = r0.

9 2 5
−

7

2 2
−

2 1

1 5
−

1 4

1

7

1 3 2

9 2 5
−

9

0 2
−

0

2 5
−

1 8

7

9

1 0 2

9 2 5
−

5

4 2
−

4 0

2 5
−

2 5

0

5

1 8 5

Figure 7. “Short division”: To divide any number by a one-digit number, it
is enough to be able to divide any two-digit number by the one-digit number.

With reference to the quotient digit formula (39), we see that the current approach uses
only one digit of a at a time, that is, we approximate the partial remainder of the restoring
division by its first digit, which still gives the correct quotient digit. This is more efficient
than computing with the exact partial remainder. In fact, for the general case m > 0, the
overall structure of the algorithm is exactly the same. However, since the divisor b can now
have a large number of digits, we will also be forced to approximate it by its first few digits.
This will make the quotient digit computation inexact, which we will need to deal with in
some way. In Figure 8(a), we illustrate the situation where the divisor b has 2 digits, and the
partial remainder p = βri is approximated by its leading 3 digits. In Figure 8(b), the divisor b
may have any number of digits, but is approximated by its leading 2 digits, while the partial
remainder is approximated by its leading 3 digits. Compare these diagrams with Figure 5(b).

Let us introduce a convenient new notation. For 0 ≤ k ≤ ℓ let

a[k,ℓ] = ak + ak+1β + . . . + aℓβℓ−k, (52)

which is simply the number consisting of those digits of a that are numbered by k, . . . , ℓ. For
example, when β = 10 and a = 1532, we have a[2,4] = 15. The first step of our algorithm is to
compute qn−m and 0 ≤ rn−m < b satisfying

a[n−m,n] = qn−mb + rn−m. (53)

Since the number of digits of a[n−m,n] is the same as that of b, we have qn−m ≤ β − 1. Next,
we compute qn−m−1 and 0 ≤ rn−m−1 < b satisfying

rn−mβ + an−m−1 = qn−m−1b + rn−m−1. (54)



COMPUTER ARITHMETIC 13

q = 0

q = 1

q = 2

q = 3

b

p

1 β

β

β2

(a) The divisor b is assumed to be a 2-digit
number, normalized so that 1 ≤ b < β. Thus
b can take only finitely many values, and so
it is clear that the quotient q depends only on
the leading 3 digits of p. Note that we have
0 ≤ p ≡ βri < βb, cf. Figure 5(b).

q = 0

q = 1

q = 2

q = 3

p =
b

p =
2b

p
=
3b

p
=
4
b

b

p

1 β

β

β2

(b) Approximate b by its leading 2 digits, and
p by 3 digits, i.e., q is computed only at the
lower left corner of each small rectangle. Then
there is no underestimate, and it is possible to
overestimate by 1 only in the rectangles that
intersect with the red lines.

Figure 8. Radix-4 long division.

Since rn−m < b, we are guaranteed that qn−m−1 ≤ β−1. We repeat this process until we retrieve
the last digit a0, and as before, we have

a = a[n−m,n]β
n−m + an−m−1βn−m−1 + . . . + a0

= (qn−mb + rn−m)βn−m + an−m−1βn−m−1 + . . . + a0
= qn−mbβn−m + (rn−mβ + an−m−1)βn−m−1 + . . . + a0
= qn−mbβn−m + (qn−m−1b + rn−m−1)βn−m−1 + . . . + a0 = . . .
= qn−mbβn−m + qn−m−1bβn−m−1 + . . . + q0b + r0

= b
n−m
∑
k=0

qkβ
k + r0,

(55)

which shows that qk is the k-th digit of q, and that r = r0.
This seems all well and good, except that as mentioned before, there is a catch: In (53) and

(54), we divide by b, which has m+1 digits, and we cannot rely on the built-in arithmetic since
m can be large. We encounter the divisions (53) and (54) in each step of the paper-and-pencil
long division method. There, what helps is intuition and the fact that in practice we usually
have m not too large. Here, we need to replace intuition by a well defined algorithm. We shall
consider here an approach that is based on a few crucial observations. The first observation
is that since rn−m < b and an−m−1 < β, we have

rn−mβ + an−m−1 ≤ (b − 1)β + β − 1 = bβ − 1, (56)



14 TSOGTGEREL GANTUMUR

9 2 5
−

7 7

1 5 5
−

1 5 4

1

7 7

1 2

8 5 3 5 5
−

7 4 1 6

1 1 1 9 5
−

1 1 1 2 4

7 1

1 2 3 6

6 9

1 2 3 0 0 4
−

7 7 7 7

4 5 2 3 4
−

3 8 8 8 5

6 3 4 9

7 7 7 7

1 5

Figure 9. Examples of division by multiple-digit numbers. Note that in each
stage of each case, the current digit of the result can be accurately estimated by
dividing the number formed by the first 2 or 3 digits of the partial remainder,
by the number formed by the first 2 digits of the divisor. For instance, in the
1st step of the 2nd case, we have 85/12=7, while the correct digit is 6. In the
2nd stage, we have 111/12=9, which is the correct digit. See also Figure 8(b).

so that the left hand side of (54) has at most m + 2 digits. Noting that the left hand side of
(53) has m + 1 digits, we now see that (53) and (54) only require divisions of a number not
exceeding bβ − 1 by b. In other words, the original division problem a/b has been reduced to
the case a ≤ bβ −1 (and hence with m ≤ n ≤m+1). This indeed helps, because if two numbers
have roughly the same number of digits, then the first few digits of both numbers can be used
to compute a very good approximation of the quotient. For instance, as we shall prove below
in Theorem1, it turns out that under the assumption a ≤ bβ − 1, if

a[m−1,n] = q∗b[m−1,m] + r∗, (57)

with 0 ≤ r∗ < b[m−1,m], then
q ≤ q∗ ≤ q + 1, (58)

cf. Figure 8(b). This means that the quotient of the number formed by the first 2 or 3 digits
of a, divided by the number formed by the first 2 digits of b, is either equal to the quotient q
of a divided by b, or off by 1. The cases q∗ = q + 1 can easily be detected (and immediately
corrected) by comparing the product q∗b with a. For bignum arithmetic, the division (57) can
be performed in the built-in arithmetic, because the number of digits of any of the operands
therein does not exceed 3. As this requires that 3-digit numbers (i.e., numbers of the form
c0 + c1β + c2β2) should be within the reach of the built-in arithmetic, we get the bit more
stringent condition β3 ≤M , compared to the previous β2 ≤M . It is our final requirement on
β, and hence, for instance, we can take β = 221 or β = 106.

We shall now prove the claim (58).

Theorem 1. Assume that 2 ≤ b < a ≤ bβ − 1 and hence m ≤ n ≤m + 1, where n and m are as
in (17). Let q and 0 ≤ r < b be defined by

a = qb + r, (59)

and with some (small) integer p ≥ 0, let q∗ and 0 ≤ r∗ < b[m−p,m] be defined by

a[m−p,n] = q∗b[m−p,m] + r∗. (60)

Then we have

q ≤ q∗ < q + 1 + β1−p, (61)

and so q ≤ q∗ ≤ q + 1 holds as long as p ≥ 1.

Proof. Let a∗ = a[m−p,n]β
m−p, let b∗ = b[m−p,n]β

m−p, and redefine r∗ to be r∗βm−p. Then
rescaling of the equation (60) by the factor βm−p gives

a∗ = q∗b∗ + r∗, with 0 ≤ r∗ ≤ b∗ − βm−p. (62)



COMPUTER ARITHMETIC 15

We also have

βm ≤ b∗ ≤ b < b∗ + βm−p and βn ≤ a∗ ≤ a < a∗ + βm−p. (63)

We start by writing

q − q∗ = a − r
b
− a∗ − r∗

b∗
= a

b
− a∗

b∗
+ r∗

b∗
− r

b
. (64)

Then invoking b ≥ b∗ and r ≥ 0, we get

q − q∗ ≤ a − a∗

b∗
+ r∗

b∗
< βm−p + r∗

b∗
≤ 1, (65)

where we have used a − a∗ < βm−p in the second step, and r∗ ≤ b∗ − βm−p in the third step.
This shows that q − q∗ < 1, and hence q ≤ q∗.

To get an upper bound on q∗, we proceed as

q∗ − q = a∗

b∗
− a

b
+ r

b
− r∗

b∗
≤ a

b∗
− a

b
+ r

b
= a

b
⋅ b − b

∗

b∗
+ r

b
, (66)

where we have simply used a∗ ≤ a and r∗ ≥ 0. Now, the estimates a < bβ, b − b∗ < βm−p,
b∗ ≥ βm, and r ≤ b − 1 give

q∗ − q < bβ

b
⋅ β

m−p

βm
+ b − 1

b
= β1−p + 1 − 1

b
< β1−p + 1, (67)

which yields the desired estimate q∗ < q + 1 + β1−p. The proof is complete. □

Finally, let us put the algorithm together in a coherent form.

Algorithm 1: Pseudocode for long division

Data: Integers a = ∑n
k=0 akβ

k and b = ∑m
k=0 bkβ

k in radix β, satisfying a > b ≥ 2.
Result: Digits of the quotient q and the remainder r satisfying a = qb + r and 0 ≤ r < β.
Without loss of generality, assume an ≠ 0 and bm ≠ 0.
Compute q∗ and 0 ≤ r∗ < b[m−1,m] satisfying a[n−1,n] = q∗b[m−1,m] + r∗, cf. (53).
if q∗b ≤ a[n−m,n] then

qn−m ∶= q∗
rn−m ∶= a[n−m,n] − qn−mb

else
qn−m ∶= q∗ + 1
rn−m ∶= a[n−m,n] − qn−mb

end

for k ∶= n −m to 1 do
Let c ∶= rkβ + ak−1
if c = 0 then Set qk−1 ∶= 0 and rk−1 ∶= 0, and go to the next iteration.

Let the expansion of c be c = ∑ℓ
i=0 ciβ

i with cℓ ≠ 0.
Compute q∗ and 0 ≤ r∗ < b[m−1,m] satisfying c[m−1,ℓ] = q∗b[m−1,m] + r∗, cf. (54).
if q∗b ≤ c then

qk−1 ∶= q∗
rk−1 ∶= c − qk−1b

else
qk−1 ∶= q∗ + 1
rk−1 ∶= c − qk−1b

end

end



16 TSOGTGEREL GANTUMUR

Exercise 1. Estimate the bit complexity of the long division algorithm.

5. The SRT division algorithm

In this section, we consider the so-called SRT division algorithm, named after Sweeney,
Robertson, and Tocher. We use the setting from Section 3. The division algorithms we have
considered so far can be brought under one roof by writing them as the recurrence

rj+1 = βrj − qjb, (68)

where qj are the (generalized) digits of the quotient, as a function of rj and b, computed in
some way, cf. (34), (39), (43), (54), etc. Note that for convenience, we replaced the notation
q−j by qj . Repeating the previous analysis for the general recurrence (68), we infer

r0 = β−1q0b + β−1r1 = β−1q0b + β−2q1b + β−2r2 = . . .
= β−1q0b + β−2q1b + . . . + β−nqrnb + β−n−1rn+1
= β−1qb + β−n−1rn+1,

(69)

leading to

βr0 = qb + β−nrn+1, with q = q0 + q1β−1 + . . . + qnβ−n. (70)

Therefore, as long as the partial remainders rn are bounded in absolute value independently
of n, the quantity q will approximate the quotient βr0/b better and better as n grows. More
precisely, assuming that

−R1b ≤ rn < R2b for all n, (71)

for some constants R1,R2 ≥ 0, we get

− β−nR1 ≤
βr0
b
− q < β−nR2, (72)

so that each step of the recurrence (68) reduces the error in the quotient β-fold. For restoring
division and long division, we have R1 = 0 and R2 = 1, while for non-restoring division, we
have R1 = R2 = 1.

We employed approximations of the partial remainder and the divisor in long division,
which resulted in occasional errors that needed to be corrected. The main idea behind the
SRT division is to use redundant digits to represent the quotient, so that the correction step
is not necessary. Fix a constant α ∈ N, and suppose that we allow the quotient digits to be
qi ∈ {−α, . . . , α}. Then let us try to maintain

−Rb ≤ rj < Rb for all j, (73)

for some constant R > 0. In other words, we require that for all −Rb ≤ r < Rb, the inequality

−Rb ≤ βr − qb < Rb, (74)

have at least one solution q ∈ {−α, . . . , α}. First of all, a necessary condition is

2Rb ≥ b or R ≥ 1

2
, (75)

since otherwise, choosing r such that βr = Rb would give βr − b = (R − 1)b < −1
2b < −Rb, and

hence the inequality (74) would have no integer solution. On the other hand, letting r and q
take their extreme values, the best bounds on βr − qb we can get are

− βRb + αb ≤ βr − qb < βRb − αb, (76)

implying that we need

βR − α ≤ R or R ≤ α

β − 1
. (77)



COMPUTER ARITHMETIC 17

In order to get maximum redundancy in the choice of the quotient digit q, we let

R = α

β − 1
, (78)

which leads to the requirement

α ≥ β − 1
2

. (79)

Figure 10 illustrates the situation β = 4 and α = 2, thus R = 2
3 .

ri

ri+1
β
r i

β
r i
−
b

β
r i
−
2
b

β
r i
+
b

β
r i
+
2
b

−

2

3
b 2

3
b

(a) Given the partial remainder ri, the quo-
tient digit qi is chosen according to which of
the slanted lines falls inside the white square.
This ensures that the condition − 2

3
b ≤ ri < 2

3
b

is preserved. Note that for some values of ri,
there are two possible choices of qi.

b

p

1 β

2

3
β

2

3
β2

−

2

3
β

−

2

3
β2

q = 0

q =
1

q =
2

q =
−1

q
=
−

2

p =
1

3
b

p =
2

3
b

p =
4

3
b

p =
5

3
b

p = −
1

3
b

p =
−

2

3
b

p =
− 4

3 b
p
=
− 5

3 b

p
=

8
3
b

p
=

8
3 b

(b) Dependence of the quotient digit q = qi on
the partial remainder p = βri and the divisor
b. The cyan coloured strips correspond to the
pairs (b, p) with two possible choices of q.

Figure 10. Radix-4 SRT division.

To see that the conditions (78)-(79) are sufficient, simply set

q =
⎧⎪⎪⎨⎪⎪⎩

⌊β(r+Rb)
b ⌋ − α for βr < (2α + 1 − βR)b,

α for βr ≥ (2α + 1 − βR)b.
(80)

As r ≥ −Rb, this ensures that −α ≤ q ≤ α. In the first case of (80), we have

βr − qb = βr − b ⌊β(r +Rb)
b

⌋ + αb = β(r +Rb) − b ⌊β(r +Rb)
b

⌋ − (βR − α)b, (81)

implying that

−Rb ≤ βr − qb < (1 −R)b. (82)

Note that 1 −R ≤ 1
2 ≤ R by (79). As for the second case of (80), a simple manipulation gives

(1 −R)b ≤ βr − qb < Rb. (83)

We conclude that (80) solves the inequality (74).



18 TSOGTGEREL GANTUMUR

As mentioned before, the point of the SRT division is that (74) has more than one solution
for some values of the partial remainder r. More precisely, assuming that

R ≤ 1, or equivalently, α ≤ β − 1, (84)

which rules out triple solutions, the inequality (74) has double solutions if and only if

(k + 1 −R)b ≤ βr < (k +R)b for some k ∈ {−α, . . . , α − 1}. (85)

On Figure 10, these regions are depicted in cyan.

b

p

1 β

2

3
β

2

3
β2

q = 0

q = 1

q = 2

p =
1

3
b

p =
2

3
b

p =
4

3
b

p =
5

3
b

p
=

8
3
b

(a) The divisor b is approximated by its leading
4 bits, while the partial remainder p is approxi-
mated by 3 bits. The two red squares show that
this precision is not enough to yield a valid de-
cision procedure for the quotient digit q.

b

p

1 β

2

3
β

2

3
β2

q = 0

q = 1

q = 2

p =
1

3
b

p =
2

3
b

p =
4

3
b

p =
5

3
b

p
=

8
3
b

(b) The divisor b is approximated by its leading
5 bits, while the partial remainder p is approx-
imated by 4 bits. This precision is accurate
enough to yield a valid decision procedure for
the quotient digit q.

Figure 11. Radix-4 SRT division.

The fact that we have two equally correct choices for the quotient digit in those special
regions of the (b, p)-diagram, cf. Figure 10(b), grants us the possibility to make the decision
based on only a few digits of b and p. In Figure 11, we consider two attempts at designing
such a decision procedure. For convenience, we depicted only the positive half of the diagram.
First, we approximate the divisor b by its leading 4 bits, and the partial remainder p by 3
bits (left diagram). Here we see that there are situations (red regions) where some pairs (b, p)
from the “q = 1 only” region and some pairs (b, p) from the “q = 2 only” region give the same
combination of leading digits. One idea is to scale both b and p so that 2 ≤ b < 4, which will
make sure that the “problem regions” are avoided. On the other hand, by using 5 bits of b
and 4 bits of p, we can design a procedure to choose a valid quotient digit (right diagram).

The main benefit of the SRT division algorithm is that since the quotient digit depends only
on a few leading digits of the partial remainder, the quotient digit computation can start as
soon as those digits of the partial remainder become available. The details can be organized
in various ways, and we refer the reader to specialized literature on hardware arithmetic.

6. Floating point numbers

Since the real numbers are uncountable, in general, they must be approximately repre-
sented. Perhaps the simplest proposal would be to use the integers internally, but to interpret
them in such a way that m ∈ Z represents κm, where κ is some fixed small constant, such as
κ = 0.001. This gives us access to the subset κZ̃ ⊂ R, where Z̃ ⊂ Z is the set of all admissible
integers in the given setting. With reference to how we represent integers, it is convenient to
have κ = βe, where e is a fixed integer, so that the accessible numbers are of the form

a =mβe, m ∈ Z̃. (86)



COMPUTER ARITHMETIC 19

For example, with β = 10 and e = −2, we get the numbers such as 1.00,1.01, . . . ,1.99, and with
β = 10 and e = −3, we get 1.000,1.001, . . . ,1.999, etc. These are called fixed point numbers,
which can be imagined as a uniformly spaced net placed on the real number line. Note that
in the discussion of the division algorithms, we have implicitly used fixed point numbers.

In practice, there is a trade-off between precision and range: For example, supposing that
we can store only 4 decimal digits per (unsigned) number, taking e = −1 gives the numbers
000.0, . . . ,999.9, while the choice e = −3 would result in 0.000, . . . ,9.999. With 64 bit integers,
if we take e = −30 (and β = 2), which corresponds to 30 log10 2 ≈ 9 digits after the radix
point in decimals, we can cover an interval of width 234 ≈ 17 ⋅ 109. Thus, fixed point numbers
are only good for working with moderately sized quantities, although the implementation is
straightforward and they offer a uniform precision everywhere within the range.

A simple modification of the above scheme yields a system that can handle extremely wide
ranges: We let the exponent e to be a variable in (86), leading to floating point numbers

a =mβe, m ∈M, e ∈ E, (87)

where M ⊂ Z and E ⊂ Z. In this context, m and e are called the mantissa (or significand)
and the exponent of a, respectively.

● Note that the role of e is simply to tell the location of the radix point. In practice,
e is moderate, so it does not require much storage. For example, the volume of the
observable universe is roughly 10185 cubic Planck length.
● Hence the main information content of a number is in the mantissa. Thus, 1000002
and 2890.032 contain basically the same amount of information.
● The number of digits in the mantissa is called the number of significant digits.

Modern computers handle floating point numbers at the hardware level, following the pre-
dominant IEEE 754 standard. Perhaps the most popular among the formats provided by this
standard is double precision format, which uses 64 bits per number as follows.

● 1 bit for the sign of m.
● 52 bits for the magnitude of m. The first bit of m is not stored here, and is taken to
be 1 in the so called normalized regime. So the smallest positive value of m in this
regime is 252, the next number is 252 + 1, and so on, the largest value is 253 − 1. In
decimals, 52 bits can be rephrased as roughly 16 significant digits.
● 11 bits for e. It gives 2048 possible exponents, but 2 of these values are used as special
flags, leaving 2046 possibilities, which we use as: E = {−1074,−1073, . . . ,971}.
● One of the special values of e is to signal an underflow, and activate the denormalized
regime. In this regime, the first bit of m is implied to be 0, and e = −1074.
● Depending on the value of m, the other special value of e is used to signal signed
infinities (overflow) or NaN (not a number, such as 0/0).

Example 2. To have a better understanding, let us consider a simplified model, where β = 10,
two digits are allowed for m, and E = {−1,0,1}. In the normalized regime, the mantissa
must satisfy 10 ≤ m ≤ 99, and hence the smallest positive number is 10 ⋅ 10−1 = 1, and the
largest number is 99 ⋅ 101 = 990. In the denormalized regime, the nonnegative numbers are
0,0.1, . . . ,0.9. This situation is illustrated in Figure 12.

As for the double precision format, the smallest normalized positive number is

a∗ = 252 ⋅ 2−1074 = 2−1022 ≈ 10−308, (88)

and the largest possible number is

a∗ = (253 − 1) ⋅ 2971 ≈ 21024 ≈ 10308. (89)

If the result of a computation goes beyond a∗ in absolute value, we get an overflow. On the
other hand, an underflow occurs when a computation produces a number that is smaller than

https://en.wikipedia.org/wiki/IEEE_754


20 TSOGTGEREL GANTUMUR

t

x

e
=

−
1

e
=

0
e

=
1

ov
er

fl
ow

Figure 12. The red dots at the left signify the denormalized regime (the
underflow gap). The graph of a logarithm function is shown in the background.

a∗ in absolute value. In contrast to older formats where 0 was the only admissible number
in the so-called underflow gap (−a∗, a∗), the current standard supports gradual underflow,
meaning that it has denormalized numbers sprinkled throughout this gap. However, gradual
or not, an underflow means a contaminated outcome, and should be avoided at all cost.

Furthermore, the distance between two consecutive double precision numbers behaves like

δx ∼ ε∣x∣, where ε ≈ 10−16, (90)

in the normalized regime, and

δx ∼ 2−1022ε, (91)

in the denormalized regime. This can be thought of as the “resolution” of the double precision
floating point numbers.

Remark 3. It is clear that the normalized regime is where we want to be in the course of
any computation, and one needs a theoretical guarantee that the algorithm stays within this
regime. What is the same, we need to analyze the potential situations where underflow or
overflow (or NaN for that matter) could be produced, and should modify the algorithm to
account for those. Once this is taken care of, the upper and lower limits of e become irrelevant,
and we can set E = Z in (87), leading to what can be called generalized floating point numbers

R̃ = R̃(β,N) = { ±
N

∑
k=0

akβ
k+e ∶ 0 ≤ ak ≤ β − 1, e ∈ Z}. (92)

Note that in order to ensure uniqueness of a representation a = ±∑N
k=0 akβ

k+e for any given

a ∈ R̃, we can assume aN ≠ 0 unless a = 0.

Thus in the double precision format, or in any other reasonable setting, the floating point
numbers can be modelled by a set R̃ ⊂ R, satisfying the following assumption.

Axiom 0. There exist ε ≥ 0 and a map fl ∶ R→ R̃ such that

∣fl(x) − x∣ ≤ ε∣x∣ for all x ∈ R. (93)



COMPUTER ARITHMETIC 21

The parameter ε is called the machine epsilon or the machine precision.

Note that in the context of (92), we may take fl(x) = max{y ∈ R̃ ∶ y ≤ x} and ε = β−N , or

more precisely, ε = (β−1)β−N−1. By taking fl ∶ R→ R̃ as rounding to the closest floating point
number, we can even get ε = 1

2β
−N , but this does not give any improvement for β = 2.

7. Floating point arithmetic

Let us now discuss the basic arithmetic operations on R̃. An immediate observation is
that R̃ is in general not closed under arithmetic operations. For instance, thinking of β = 10
and N = 2 in (92), we have 1.01 ∈ R̃, but 1.01 × 1.01 = 1.0201 /∈ R̃. Therefore, we need to
approximate these operations. As a benchmark, we may consider fl(x+ y), fl(x− y), fl(x× y),
etc., as approximations to x+y, x−y, x×y, etc., respectively, for which we have the estimates

∣fl(x ± y) − (x ± y)∣ ≤ ε∣x ± y∣, ∣fl(x × y) − (x × y)∣ ≤ ε∣x × y∣, etc. (94)

In practice, however, it would be inefficient to compute x ± y exactly, in order to produce
fl(x± y), if x and y have very different magnitudes, as in, e.g., 1050 + 10−50. Hence we need a
more direct way to approximate x ± y.

Example 4. It turns out that a simple truncation is enough when the signs of the two
summands are the same. Thus thinking of N = 2 and β = 10 in (92), in order to compute
101 + 2.6, we truncate 2.6 to 2, and use s̃ = 101 + 2 as an approximate sum.

Lemma 5 (Truncated sum). Let R̃ be as in (92), and suppose that a, b ∈ R̃ are given by

a =
N

∑
k=0

akβ
k+e, and b =

N

∑
k=0

bkβ
k+e−m, (95)

with aN ≠ 0 and m ≥ 0. Then the “truncated sum”

s̃ = a +
N

∑
k=m

bkβ
k+e−m, (96)

satisfies the error bound

∣s̃ − (a + b)∣ ≤ β−N(a + b). (97)

Proof. First of all, note that we can set e = 0 since we are only interested in relative errors.
Then we proceed as

0 ≤ a + b − s̃ =
m−1
∑
k=0

bkβ
k−m ≤

m−1
∑
k=0
(β − 1)βk−m

≤ (β − 1)(1 + β + . . . + βm−1)β−m

= (βm − 1)β−m ≤ 1,

(98)

where we have used the fact that bk ≤ β − 1. On the other hand, we have

a + b ≥ a ≥ aNβN ≥ βN , or 1 ≤ β−N(a + b), (99)

which completes the proof. □

Example 6. The situation with subtraction (in the sense that the summands have differing
signs) is slightly more complicated. To illustrate, consider the subtraction 10.1 − 9.95 = 0.15,
and again thinking of N = 2 and β = 10 in (92), note that the truncated subtraction gives
10.1 − 9.9 = 0.2. Then the absolute error is 0.2 − 0.15 = 0.05, and the relative error is 0.05

0.15 =
1
3 .

This is much larger than the desired level 10−2.



22 TSOGTGEREL GANTUMUR

Nevertheless, the solution is very simple: We use a few extra “guard digits” to perform
subtraction, and then round the result to a nearest floating point number. In fact, a single
guard digit is always sufficient. So for the preceding example, with 1 guard digit, we get
10.1 − 9.95 = 0.15 as the intermediate result, and since 0.15 ∈ R̃, subtraction is exact. If
we were computing, say, 15.1 − 0.666, with 1 guard digit, the intermediate result would be
15.10 − 0.66 = 14.44, and after rounding, our final result would be 14.4.

In the following lemma, we take R̃ as in (92), and let rnd ∶ R→ R̃ be an operation satisfying

∣x − rnd(x)∣ ≤ δβ−N , x ∈ R, (100)

with some constant 1
2 ≤ δ ≤

β−1
β . Note that if this operation is rounding to a nearest floating

point number, then δ = 1
2 , whereas for a simple truncation we can set δ = β−1

β .

Lemma 7 (Subtraction with guard digits). Let

a =
N

∑
k=0

akβ
k+e, and b =

N

∑
k=0

bkβ
k+e−m, (101)

with aN ≠ 0 and m ≥ 0. Then the truncated subtration with j ≥ 1 guard digits

d̃ = rnd(a −
N

∑
k=m−j

bkβ
k+e−m), (102)

satisfies the error bound

∣d̃ − (a − b)∣ ≤ (δ + (1 + δ)β1−j)β−N(a − b). (103)

In particular, taking j = 1 and δ = 1
2 , we can ensure ∣d̃ − (a − b)∣ ≤ 2β−N(a − b).

Proof. Without loss of generality, assume e = 0. Let

d∗ = a −
N

∑
k=m−j

bkβ
k+e−m, (104)

be the intermediate result, and note that the final result d̃ = rnd(d∗) satisfies

∣d̃ − d∗∣ ≤ δβ−Nd∗. (105)

Since the intermediate result is exact (meaning d∗ = a − b) if m ≤ j, we can further assume
that m > j ≥ 1. Then we proceed similarly to the proof of Lemma5, and get

0 ≤ d∗ − (a − b) =
m−j−1
∑
k=0

bkβ
k−m ≤

m−j−1
∑
k=0
(β − 1)βk−m

≤ (β − 1)(1 + β + . . . + βm−j−1)β−m

= (βm−j − 1)β−m ≤ β−j .

(106)

A lower bound on a − b can be obtained as follows.

a − b ≥ aNβN −
N

∑
k=0

bkβ
k−m ≥ βN −

N

∑
k=0
(β − 1)βk−m

= βN − (β − 1)(1 + β + . . . + βN)β−m

= βN − (βN+1 − 1)β−m ≥ βN − βN−1 + β−m

≥ (β − 1)βN−1.

(107)



COMPUTER ARITHMETIC 23

Finally, an application of the triangle inequality, in combination with (105) and (106), gives

∣d̃ − (a − b)∣ ≤ ∣d̃ − d∗∣ + ∣d∗ − (a − b)∣ ≤ δβ−Nd∗ + β−j

≤ δβ−N(β−j + a − b) + β−j

≤ δβ−N(a − b) + (1 + δβ
−N)β1−j

(β − 1)
β−N(a − b),

(108)

where we have used d∗ ≤ β−j + a − b in the penultimate step, and 1 ≤ β1−N

β−1 (a − b) from (107)

in the last step. The proof is complete, as β ≥ 2 and N ≥ 0. □
Turning to multiplication and division, recall that

(m1β
e1) × (m2β

e2) = (m1m2)βe1+e2 ,

(m1β
e1)/(m2β

e2) = (m1/m2)βe1−e2 .
(109)

To compute m1m2 exactly, one should be able to work with ∼ 2N significant digits. The
exact result can then be rounded to N digits. A more efficient choice would be a truncated
multiplication (also called a “short product”), cf. Exercise 2. For division, we may simply
apply the long division algorithm until the first N digits are obtained. Hence multiplication
and division of floating point numbers are completely straightforward to implement, provided
that we have good algorithms for integer arithmetic.

These discussions justify the following general assumption.

Axiom 1. For each ⋆ ∈ {+,−,×, /}, there exists a binary operation ⍟ ∶ R̃ × R̃→ R̃ such that

∣x ⋆ y − x⍟ y∣ ≤ ε∣x ⋆ y∣, x, y ∈ R̃, (110)

where of course, division by zero is excluded.

Remark 8. Once we have formulated the axioms, the idea is obviously to use them as a
foundation, so that analysis (as well as design) of algorithms do not depend on the specific
details of how floating point numbers were implemented. For instance, we do not need to be
concerned with the parameters β and N , or even with what exactly the set R̃ is. All we need
is the knowledge that there is a set R̃ ⊂ R satisfying the axioms with some parameter ε ≥ 0.
In this regard, any 5-tuple (R̃,⊕,⊖,⊗,⊘) satisfying Axiom0 and Axiom1 may be called a

floating point system with machine precision ε. Then the special case with R̃ = R and ε = 0
would be called exact arithmetic.

Remark 9. In case one needs more precision than allowed by the default floating point
numbers, a robust option is arbitrary precision formats, which are usually implemented at the
software level. Arbitrary precision simply means that the mantissa of a number is now bignum,
and the arithmetic operations can be performed to stay within any given error tolerance. The
cost of operations must then depend on the number of significant digits, as in Figure 1.

Exercise 2 (Short product). We have reduced multiplication of floating point numbers to
multiplication of two positive integers, cf (109). Recall from Section 2 the multiplication
algorithm based on the Cauchy product

ab = (
N

∑
j=0

ajβ
j) ⋅ (

N

∑
i=0

biβ
i) =

∞
∑
k=0
(

k

∑
j=0

ajbk−j)βk, (111)

cf. (8). We assume the normalization aN ≠ 0 and bN ≠ 0. With the intent of saving resources,
let us ignore the terms with k <m in the latter sum, with the truncation parameter m, that
is, we replace the product ab by

p̃ =
∞
∑
k=m
(

k

∑
j=0

ajbk−j)βk.



24 TSOGTGEREL GANTUMUR

Show that

0 ≤ ab − p̃ ≤ ab ⋅ βm+3−2N .

What would be a good choice for the value ofm, in the context of floating point multiplication?

Exercise 3 (Sterbenz lemma). With R̃ = R̃(β,N) as in (92), let a, b ∈ R̃ be positive numbers
satisfying 1

2a ≤ b ≤ 2a. Then show that a⊖ b = a − b.

8. Propagation of error

A numerical algorithm is an algorithm that takes a finite sequence of floating point num-
bers (and possibly integers) as input, and produces a finite sequence of floating point numbers

(and possibly integers) as output. Here a floating point number means an element of R̃ as in
the axioms. The algorithm itself can contain the usual logical constructs such as conditional
statements and loops, and a set of predefined operations on integers and floating point num-
bers, including the arithmetic operations, comparisons, and evaluation of some elementary
functions. If we fix any particular input value, then after unrolling the loops, and replacing
the conditional statements by the taken branches, the algorithm becomes a simple linear se-
quence of operations. This sequence in general depends on details of the floating point system
(R̃,⊕,⊖,⊗,⊘) that are more fine-grained than the axioms (i.e., on how the system is really
implemented), but the idea is that we should avoid algorithms whose performances critically
depend on those details, so that the axioms provide a solid foundation for all analysis. Hence
in the end, we are led to the analysis of sequences such as

R3 (1,1,exp)ÐÐÐÐÐ→ R3 (×,1)ÐÐÐ→ R2 +Ð→ R,

R̃3 (1,1,ẽxp)ÐÐÐÐÐ→ R3 (⊗,1)ÐÐÐ→ R̃2 ⊕Ð→ R̃,
(112)

where the upper row corresponds to exact arithmetic, and the lower row to inexact arithmetic.
To clarify, the preceding sequence can be rewritten as

(x, y, z)↦ (x, y, exp z)↦ (xy, exp z)↦ xy + exp z, (113)

and so it approximates the function f(x, y, z) = xy + exp z by f̃(x, y, z) = (x ⊗ y) ⊕ ẽxp(z),
with ẽxp ∶ R̃ → R̃ being some approximation of exp. In the context of numerical algorithms,
theoretical analysis of perturbations in the output due to the inexactness of floating point
arithmetic is known as roundoff error analysis. We illustrate it by the example in (113).

● If all operations except the last step were exact, then we would be computing a ⊕ b,
which is an approximation of a + b, where a = xy and b = exp(z).
● However, those operations are inexact, so the input to the last step is not the “true”
(or “intended”) values a and b, but their approximations ã = x⊗ y and b̃ = ẽxp(z).
● Hence the computed value ã⊕ b̃ will be an approximation of ã + b̃.

We can put it in the form of a diagram.

(a, b) (ã, b̃)

a + b ã + b̃ ã⊕ b̃

+ + ⊕ (114)

Here the squiggly arrows indicate perturbations from the “true values,” due to, e.g., inexact
arithmetic. The error committed in the lower right squiggly arrow can be accounted for with
the help of Axiom1:

∣ã⊕ b̃ − (ã + b̃)∣ ≤ ε∣ã + b̃∣, (115)



COMPUTER ARITHMETIC 25

or equivalently,

ã⊕ b̃ = (1 + η)(ã + b̃) for some ∣η∣ ≤ ε. (116)

On the other hand, the behaviour of the error committed in the lower left squiggly arrow is
something intrinsic to the operation of summation itself, since this simply reflects how the
sum behaves with respect to inexact summands. Thus, putting

ã = a +∆a, b̃ = b +∆b, (117)

we have

ã + b̃ − (a + b) =∆a +∆b, (118)

where, e.g., ∆a = ã − a is called the absolute error in ã. Recall that we have access to the
approximation ã, but do not have access to the “true value” a. We may read (118) as:
Absolute errors are simply combined during summation.

Next, dividing (118) through by a + b, we get

εa+b ∶=
ã + b̃ − (a + b)

a + b
= aεa + bεb

a + b
, (119)

where, e.g., εa = ∆a
a is called the relative error in ã. We see that relative errors get combined,

with weights a
a+b and b

a+b , respectively. In particular, if a + b ≈ 0, then the relative error εa+b
can be large, potentially catastrophic.

Remark 10. In the floating point context, the aforementioned phenomenon of potentially
catastrophic growth in relative error is called cancellation of digits. For example, consider

−
1 2 6.1

1 2 5.8

0.3

If we suppose that 126.1 and 125.8 had errors of size ≈ 0.1 in them, meaning that all their digits
were significant, the error in the result 0.3 can be as large as ≈ 0.2, which is barely a 1 significant
digit accuracy. Since the true result could be as small as ≈ 126.0−125.9 = 0.1, the relative error
of the result can only be bounded by ≈ 200%. The origin of the term “cancellation of digits”
is also apparent: The first 3 digits of the two numbers in the input cancelled each other. We
should stress here that the root cause of this phenomenon is the intrinsic sensitivity of the sum
(or rather, subtraction) with respect to perturbations in the summands. It has nothing to do
with the floating point arithmetic per se (In fact the subtraction in the preceding example was
exact). However, cancellation of digits is a constant enemy of numerical algorithms, precisely
because all inputs are inexact as they are in most cases the result of an inexact operation.

Turning back to the (119), assuming that ∣εa∣ ≤ ε and ∣εb∣ ≤ ε, we get

∣εa+b∣ ≤
∣a∣ + ∣b∣
∣a + b∣

ε. (120)

Here, we can think of the quantity

κ+(a, b) =
∣a∣ + ∣b∣
∣a + b∣

, (121)

as expressing the sensitivity of a + b with respect to perturbations in a and b. This is called
the condition number of addition.

We proceed further, by using the triangle inequality and the estimate (115), as

∣ã⊕ b̃ − (a + b)∣ ≤ ∣ã⊕ b̃ − (ã + b̃)∣ + ∣ã + b̃ − (a + b)∣ ≤ ε∣ã + b̃∣ + εa+b∣a + b∣, (122)



26 TSOGTGEREL GANTUMUR

where we are now thinking of εa+b as a manifestly nonnegative quantity (i.e., we denoted ∣εa+b∣
by εa+b). Then invoking

∣ã + b̃∣ ≤ (1 + εa+b)∣a + b∣, (123)

and (120), we end up with

∣ã⊕ b̃ − (a + b)∣
∣a + b∣

≤ ε(1 + εa+b) + εa+b ≤ ((1 + ε)κ+(a, b) + 1)ε, (124)

which takes into account both inexactness of the input, and inexactness of the summation
operation.

Let us do the same analysis for multiplication. We start with

ãb̃ − ab = b∆a + a∆b +∆a∆b, (125)

and division by ab yields

εab ∶=
ãb̃ − ab
ab

= εa + εb + εaεb ≈ εa + εb. (126)

Thus, relative errors are simply combined during multiplication. If we assume that ∣εa∣ ≤ ε
and ∣εb∣ ≤ ε, we get

∣εab∣ ≤ 2ε + ε2 ≤ κ×(a, b) ⋅ ε, (127)

where the condition number of multiplication is

κ×(a, b) ≈ 2. (128)

The full analysis involving inexact multiplication is exactly the same as in the case of addition,
and the final result we obtain is

∣ã⊗ b̃ − ab∣
∣ab∣

≤ ε(1 + εab) + εab ≤ ((1 + ε)κ×(a, b) + 1)ε. (129)

Quantitatively, of course κ×(a, b) remains bounded independently of a and b, while κ+(a, b)
can become unbounded, exhibiting cancellation of digits.

Remark 11 (Univariate functions). Let f ∶ I → R be a differentiable function, with I ⊂ R
being an open interval. Suppose that x̃ = x +∆x is a perturbation of the “true value” x ∈ I,
and let z = f(x). Then we have

z̃ ∶= f(x̃) = f(x +∆x) ≈ f(x) + f ′(x)∆x, (130)

and so
∆z ∶= z̃ − z ≈ f ′(x)∆x, (131)

for ∆x small. From this, we can estimate the relative error, as

∆z

z
≈ f ′(x)∆x

f(x)
= xf ′(x)

f(x)
⋅ ∆x

x
. (132)

The quantity

κf(x) =
xf ′(x)
f(x)

= (log f(x))
′

(logx)′
, (133)

is called the (asymptotic) condition number of f at x, which represents the relative error
amplification factor, in the asymptotic regime where the error is small. The sign of κf has a
little importance, so we are really thinking of having the absolute value in the right hand side
of (133). Note that this can be thought of as the “derivative measured against relative error,”
or as the derivative of log f taken with respect to the variable logx. Since the argument of
a function always involves perturbation, either due to measurement error, initial rounding,
or inexact operations in the preparation steps, the condition number reflects the intrinsic
difficulty of computing the function in floating point arithmetic.



COMPUTER ARITHMETIC 27

Example 12. Let us compute the condition numbers for some common functions.

● For f(x) = 1
x , we have κ(x) = 1.

● For f(x) = xα, we have κ(x) = α.
● For f(x) = ex, we have κ(x) = x.
● For f(x) = x − 1, we have κ(x) = x

x−1 = 1 +
1

x−1 . Cancellation of digits at x = 1.
● For f(x) = x + 1, we have κ(x) = x

x+1 . Cancellation of digits at x = −1.
● For f(x) = cosx, we have κ(x) = x tanx. Cancellation of digits at x = π

2 + πn, n ∈ Z.

Example 13. Consider the root x = 1 −
√
1 − q of the quadratic x2 − 2x + q = 0, where we

assume q ≈ 0. Suppose that
√
1 − q was computed with relative error ε, i.e., the computed

root is x̃ = 1 − (1 + ε)
√
1 − q. Then we have

x − x̃
x
= ε
√
1 − q
x

≈ 2ε

q
, (134)

where we have used the fact that x ≈ q
2 for q ≈ 0. Since 2ε

q → ∞ as q → 0, our algorithm

exhibits cancellation of digits. This occurs even if the input argument q is its true value,
because the computation of

√
1 − q is inexact. We may think of the algorithm as decomposing

the function f(q) = 1 −
√
1 − q into two factors, as

f = g ○ h, (135)

where g(y) = 1 − y and h(q) =
√
1 − q. Since h(q) is computed inexactly, and g(y) is poorly

conditioned near y = 1, we get cancellation of digits.

x

y

−1 + q

Figure 13. The quadratic y = x2 − 2x + q.

Can this be fixed? To answer this question, we compute the condition number of f :

κf(q) =
qf ′(q)
f(q)

= q

2
√
1 − q(1 −

√
1 − q)

≈ 1, for q ≈ 0, (136)

which indicates that there should be no intrinsic difficulty of computing f(q) for q ≈ 0, and
hence the preceding algorithm, i.e., the decomposition (135), was a poorly designed one. In
fact, a way out suggests itself, if we keep in mind that subtraction of nearly equal quantities
should be avoided. Namely, the following transformation gives a well behaved algorithm.

f(q) = 1 −
√
1 − q = (1 −

√
1 − q)1 +

√
1 − q

1 +
√
1 − q

= q

1 +
√
1 − q

. (137)



28 TSOGTGEREL GANTUMUR

Let us go over the involved operations one by one. First, since q ≈ 0, the subtraction 1 − q
is well conditioned. Second, the square root is always well conditioned for positive numbers,
cf, Example 12. Then as

√
1 − q ≈ 1, the summation 1 +

√
1 − q is well conditioned. Finally,

division is always well conditioned. We conclude that the algorithm implicitly defined by
(137) does not have cancellation of digits near q = 0.

Exercise 4. Perform a detailed roundoff error analysis of (137).

Remark 14 (Bivariate functions). Let f ∶ U → R be a continuously differentiable bivariate
function, with U ⊂ R2 being an open set. Suppose that x̃ = x + ∆x and ỹ = y + ∆y are
perturbations of the “true values” (x, y) ∈ U , and let z = f(x, y). Then we have

z̃ ∶= f(x̃, ỹ) ≈ f(x̃, y) + ∂f

∂y
(x̃, y)∆y ≈ f(x, y) + ∂xf(x, y)∆x + ∂yf(x̃, y)∆y

≈ f(x, y) + ∂xf(x, y)∆x + ∂yf(x, y)∆y,

(138)

where in the last step we have used the continuity of ∂yf . This gives

z̃ − z
z
≈ ∂xf(x, y)

f(x, y)
∆x +

∂yf(x, y)
f(x, y)

∆y = x∂xf(x, y)
f(x, y)

⋅ ∆x

x
+
y∂yf(x, y)
f(x, y)

⋅ ∆y

y
, (139)

and assuming that the relative errors of x̃ and ỹ are of the same magnitude, we are led to the
definition that the asymptotic condition number of f is

κf(x, y) = ∣
x∂xf

f
∣ + ∣

y∂yf

f
∣ = κx,f + κy,f , (140)

which can be thought of as the sum of two condition numbers, one in x direction and the
other in y direction.

Example 15. Let us compute the conditions numbers for some common functions.

● For f(x, y) = x + y, we have κ(x, y) = ∣x∣+∣y∣∣x+y∣ , cf. (121).

● For f(x, y) = xαyβ, we have κ(x, y) = ∣α∣ + ∣β∣. Putting α = 1 and β = −1, we get the
(asymptotic) condition number of division.

Exercise 5. Generalize the notion of condition number to functions of n variables. Then
compute the condition numbers of the sum and the product of n numbers.

Exercise 6. Let I ⊂ R and J ⊂ R be open intervals, thought of as the domain and codomain
of some collection of functions f ∶ I → J . We associate to I and J the “error metrics”

e(x,∆x) = g(x)∆x, e(z,∆z) = h(z)∆z, (141)

where, e.g., e(x,∆x) is to be understood as the error measure of the perturbation ∆x near
the point x, and g and h are positive functions. For a differentiable function f ∶ I → J , we
have ∆z ≈ f ′(x)∆x, and so

h(z)∆z ≈ h(z)f ′(x)∆x = xh(f(x))f ′(x)
g(x)

⋅ g(x)∆x, (142)

leading us to define the generalized asymptotic condition number

κf(x) =
xh(f(x))f ′(x)

g(x)
, (143)

associated to the error metrics (141). Note that the usual condition number (133) is obtained
by setting g(x) = 1

x and h(z) = 1
z .

(a) Take I = J = R, and find all error metrics for which the generalized condition number of
any translation f(x) = x + a (a ∈ R) is equal to 1.



COMPUTER ARITHMETIC 29

(b) Take I = J = (0,∞), and find all error metrics for which the generalized condition number
of any scaling f(x) = λx (λ > 0) is equal to 1.

9. Summation and product

In this section, we consider computation of the sum and product

sn = x1 + x2 + . . . + xn, pn = x1 × x2 × . . . × xn, (144)

of a given collection x = (x1, . . . , xn) ∈ Rn. First of all, let us look at the condition numbers.
Thus, introduce perturbations

x̃k = xk +∆xk, k = 1, . . . , n, (145)

and let

s̃n = x̃1 + x̃2 + . . . + x̃n, p̃n = x̃1 × x̃2 × . . . × x̃n. (146)

Then we have

s̃n − sn =∆x1 +∆x2 + . . . +∆xn, (147)

and assuming that ∣∆xk∣ ≤ ε∣xk∣ for k = 1, . . . , n, we get

∣s̃n − sn∣
∣sn∣

≤ ∣x1∣ + ∣x2∣ + . . . + ∣xn∣
∣sn∣

ε. (148)

From this, we read off the condition number of summation

κ+(x) =
∣x1∣ + ∣x2∣ + . . . + ∣xn∣
∣x1 + x2 + . . . + xn∣

, (149)

which is a generalization of (121). Naturally, we have cancellation of digits near sn = 0.
Turning to product, we start with

p̃n − pn = x̃1x̃2⋯x̃n − x1x2⋯xn = (x̃1 − x1)x̃2⋯x̃n + x1x̃2⋯x̃n − x1x2⋯xn
= (x̃1 − x1)x̃2⋯x̃n + x1(x̃2 − x2)x̃3⋯x̃n + x1x2x̃3⋯x̃n − x1x2⋯xn = . . .
= (x̃1 − x1)x̃2⋯x̃n + x1(x̃2 − x2)x̃3⋯x̃n + . . . + x1x2⋯xn−1(x̃n − xn).

(150)

Then invoking the estimates ∣x̃k − xk∣ ≤ ε∣xk∣ and ∣x̃k∣ ≤ (1 + ε)∣xk∣, we infer

∣p̃n − pn∣ ≤ (ε(1 + ε)n−1 + ε(1 + ε)n−2 + . . . + ε(1 + ε) + ε)∣x1x2⋯xn∣

= ((1 + ε)n − 1)∣pn∣ = (nε + (
n

2
)ε2 + . . . + nεn−1 + εn)∣pn∣

≤ (nε + n2ε2 + . . . + nn−1εn−1 + nnεn)∣pn∣

≤ nε

1 − nε
∣pn∣,

(151)

where we have assumed that nε < 1. This implies that for perturbations satisfying, say, nε ≤ 1
2 ,

the condition number of product satisfies

κ×(x) ≤ 2n, (152)

and asymptotically, we have κ×(x) ≤ n as ε→ 0.
Next, we look at the effect of inexact arithmetic on products with unperturbed input.

Introduce the notation

p̄k = x1 ⊗ x2 ⊗ . . .⊗ xk, k = 1,2, . . . , n, (153)



30 TSOGTGEREL GANTUMUR

and invoking Axiom1, we have

p̄2 = x1 ⊗ x2 = (1 + η1)x1x2,
p̄3 = p̄2 ⊗ x3 = (1 + η2)p2x3 = (1 + η1)(1 + η2)x1x2x3,

. . .

p̄n = p̄n−1 ⊗ xn = (1 + ηn−1)pn−1xn = (1 + η1)(1 + η2)⋯(1 + ηn−1)x1x2⋯xn,

(154)

for some η1, . . . , ηn−1 satisfying ∣ηk∣ ≤ ε, k = 1, . . . , n − 1. This yields
∣p̄n − pn∣ = ∣(1 + η1)(1 + η2)⋯(1 + ηn−1) − 1∣∣pn∣ ≤ ((1 + ε)n−1 − 1)∣pn∣ (155)

and so
∣p̄n − pn∣
∣pn∣

≤ (n − 1)ε
1 − (n − 1)ε

≤ 2nε, (156)

where in the last step we have assumed that nε ≤ 1
2 .

Exercise 7. Combine the effects of input perturbation and inexact arithmetic for products.
That is, estimate x̃1 ⊗ . . .⊗ x̃n − x1 × . . . × xn, where the notations are as above.

Finally, we deal with inexact summation.

Example 16 (Swamping). Thinking of N = 2 and β = 10 in (92), we have 10.0⊕ 0.01 = 10.0,
and by repeating this operation, we get, for instance

10.0⊕ 0.01⊕ 0.01⊕ . . .⊕ 0.01
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

100 times

= 10.0, (157)

giving the relative error ≈ 10%. On the other hand, we have

0.01⊕ 0.01⊕ . . .⊕ 0.01
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

100 times

⊕10.0 = 11.0, (158)

which is the exact result. This suggests that one should sum the small numbers first. In
particular, floating point addition is not associative.

x1 x2

+

x3

+

x4

+

x5

+

x6

+

. . .

. . .

Figure 14. The “naive” summation algorithm (159). Errors made in the
early steps get amplified more, as they must go through all the subsequent
steps.

As with the product, introduce the notation

s̄k = x1 ⊕ x2 ⊕ . . .⊕ xk, k = 1,2, . . . , n, (159)

and invoking Axiom1, we have

s̄2 = x1 ⊕ x2 = (1 + η1)(x1 + x2),
s̄3 = s̄2 ⊕ x3 = (1 + η2)(p2 + x3) = (1 + η1)(1 + η2)(x1 + x2) + (1 + η2)x3,

. . .

s̄n = s̄n−1 ⊕ xn = (1 + ηn−1)(sn−1 + xn)
= (1 + η1)⋯(1 + ηn−1)(x1 + x2) + (1 + η2)⋯(1 + ηn−1)x3 + . . . + (1 + ηn−1)xn,

(160)



COMPUTER ARITHMETIC 31

for some η1, . . . , ηn−1 satisfying ∣ηk∣ ≤ ε, k = 1, . . . , n − 1. This yields
∣s̄n − sn∣ ≤ ∣(1 + η1)⋯(1 + ηn−1) − 1∣∣x1 + x2∣

+ ∣(1 + η2)⋯(1 + ηn−1) − 1∣∣x3∣ + . . . + ∣ηn−1∣∣xn∣
≤ ((1 + ε)n−1 − 1)∣x1 + x2∣ + ((1 + ε)n−2 − 1)∣x3∣ + . . . + ε∣xn∣.

(161)

Since (1+ ε)k − 1 = kε+O(k2ε2), terms such as x1 and x2 carry more weight in the final error
than terms such as xn, explaining the swamping phenomenon we have seen in Example 16.
By using the simple estimate (1 + ε)k − 1 ≤ nε

1−nε =∶ ρ(ε, n) on all pre-factors, we arrive at

∣s̄n − sn∣
∣sn∣

≤ nε

1 − nε
⋅ ∣x1∣ + . . . + ∣xn∣
∣x1 + . . . + xn∣

= ρ(ε, n)κ+(x) ≤ 2nκ+(x)ε, (162)

where in the last step we have assumed that nε ≤ 1
2 .

Remark 17. Recall that the condition number κ+(x) reflects how error propagates through
the summation map x ↦ s. Then ρ(n, ε) has to do with the particular way this map is
implemented, i.e., how x↦ s is approximated by a sequence of floating point operations.

Exercise 8. Combine the effects of input perturbation and inexact arithmetic for summation.
That is, estimate x̃1 ⊕ . . .⊕ x̃n − (x1 + . . . + xn), where the notations are as above.

Exercise 9. To reduce the parameter ρ(n, ε) = O(nε), as well as to alleviate the phenomenon
of swamping, one may consider the pairwise summation algorithm, depicted in Figure 15.

x1 x2

+

+

x3

+

x4 x5

+

x6 . . .

. . .

. . .

Figure 15. Pairwise summation algorithm.

More precisely, we set
σ(x1, x2) = x1 ⊕ x2, (163)

and
σ(x1, x2, . . . , x2k) = σ(x1, x2, . . . , xk)⊕ σ(xk+1, xk+2, . . . , x2k), (164)

for k ≥ 2. This defines an algorithm for summing x1, x2, . . . , xn, when n is a power of 2.

(a) Extend the algorithm to arbitrary integer n, not necessarily a power of 2.
(b) Show that ρ(n, ε) = O(ε logn) for this algorithm.

Exercise 10. Let x1, x2, . . . be a sequence of floating point numbers, and let sn = x1+ . . .+xn.
Consider Kahan’s compensated summation algorithm

yn = xn + en−1
s̃n = s̃n−1 + yn
en = (s̃n−1 − s̃n) + yn, n = 1,2, . . .

where each operation is performed in floating point arithmetic, and s̃0 = e0 = 0.
(a) Explain why you would expect the roundoff accuracy of this method to be better than

that of the naive summation method.



32 TSOGTGEREL GANTUMUR

(b) Show that

∣s̃n − sn∣ ≤ [Cε +O(ε2)]
n

∑
k=1
∣xk∣,

where C is some constant, and ε is the machine epsilon.


	1. Introduction
	2. Integers
	3. Simple division algorithms
	4. Long division
	5. The SRT division algorithm
	6. Floating point numbers
	7. Floating point arithmetic
	8. Propagation of error
	9. Summation and product

