
MATH 387 ASSIGNMENT 3

DUE WEDNESDAY MARCH 14

Note: You are encouraged to do additional reading for this assignment, and strongly
encouraged to type your solutions in LATEX.

1. (a) Let A ∈ Rn×m be a matrix with full column rank. Show that the reduced QR
factorization

A = QR

exists and is unique, where Q ∈ Rn×m has orthonormal columns and R is upper
triangular with positive diagonal entries.

(b) Recall that two matrices A and B are called similar, if there is an invertible matrix
Θ such that ΘAΘ−1 = B. Show that similar matrices share the same collection
of eigenvalues. In particular, if A is similar to B and B is diagonal, then we can
simply read off the eigenvalues of A from the diagonal entries of B. If such B exists,
then we say that A is diagonalizable. Show that even in exact arithmetic, there
is no general procedure to construct Θ for any given diagonalizable A, such that
ΘAΘ−1 is diagonal, where by a “procedure” we mean a finite sequence of elementary
operations, including taking n-th roots.

2. (a) Describe an algorithm for QR decomposition that is based on Givens rotations.
Estimate the asymptotic complexity of the algorithm, and compare it to that of the
Householder QR algorithm.

(b) Adapt the Householder QR algorithm so that it can efficiently handle the case when
A ∈ Rn×m has lower bandwidth p and upper bandwidth q, i.e., when aij = 0 for
i− j > p or j − i > q.

(c) A square matrix B is called Hessenberg if bij = 0 for i−j > 1, i.e., if all entries below
the first sub-diagonal are zero. Come up with a procedure based on Householder
reflections, that constructs an orthogonal matrix Q such that QAQ>= B, where A
is a given square matrix, and B is a Hessenberg matrix. Show that in this setting,
if A is symmetric, then we can make B tridiagonal. (In view of 1(b), this is about
the best we can do for eigenvalue problems, without resorting to infinite processes.)

3. In this exercise, we will study the Cholesky factorization A = R>R, which is an adap-
tation of the LU factorization to symmetric and positive definite matrices. Recall that
A is called positive definite if x>Ax > 0 for all nonzero x. Assume that A ∈ Rn×n is
symmetric and positive definite, and justify the following steps in detail.
(a) All eigenvalues of A are positive.
(b) All principal minors of A are positive, and therefore an LU factorization of A exists.
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(c) Let A = LU be the LU factorization, and let D be the diagonal matrix consisting of
the diagonal entries of U . Then M = D−1U satisfies M = L>, and hence A = LDL>.

(d) There exists a diagonal matrix Λ such that Λ2 = D, and with R = ΛL>, we have
the Cholesky factorization A = R>R, where R is upper triangular with positive
diagonal entries.

(e) The entries of R = [rij ] satisfy the bound

r2ij ≤ ajj (1 ≤ i, j ≤ n),

where ajj are the diagonal entries of A. This indicates a strong stability property
of the Cholesky factorization.

(f) The j-th column of the relation A = R>R is

Aj =

j∑
k=1

rkj(R
>)k =

j−1∑
k=1

rkj(R
>)k + rjj(R

>)j ,

where (R>)k is the k-th column of R>, or the transposed k-th row of R. Let us
rewrite it as

rjj(R
>)j = Aj −

j−1∑
k=1

rkj(R
>)k =: v. (∗)

The vector v ∈ Rn depends only on the first j−1 rows of R, and hence the j-th row
of R can be computed by

(R>)j =
1
√
vj
v, (∗∗)

where vj is of course the j-th component of v. Taking the second equality of (∗) as
a prescription to compute v, the relations (∗) and (∗∗), with j = 1, . . . , n, define an
algorithm to compute the Cholesky factor R.

(g) The purpose of the j-th step of the aforementioned algorithm is to compute the
j-th row of R. Hence we only need to be compute the last n− j + 1 components of
v in (∗). Taking this into account, we estimate the number multiplications in the
Cholesky factorization algorithm as 1

6n
3 + O(n2), which shows that it is twice as

efficient as the Gaussian elimination.
4. In class, we have shown that if K is a square matrix with ‖K‖ < 1, then I − K is

invertible, and

I +K +K2 + . . .+Km → (I −K)−1 as m→∞.

We can use this fact to design an iterative method to solve Ax = b. The starting point
should be to somehow write A in terms of I − K, where K has small norm. We can
write A = I − (I − A) and set K = I − A, but we would need ‖I − A‖ < 1 to ensure
convergence. As a simple way to introduce some flexibility, let us multiply Ax = b by
some number ω ∈ R \ {0}, to get

ωAx = ωb,
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and then introduce K = I − ωA, yielding

(I −K)x = ωb ⇐⇒ Ax = b.

If ‖K‖ = ‖I − ωA‖ < 1, then

xm := (I +K +K2 + . . .+Km)ωb→ x.

The iterates xm satisfy the recurrent relation

xm+1 = ωb+K(I +K + . . .+Km)ωb = ωb+Kxm = ωb+ (I − ωA)xm

= xm + ω(b−Axm),

which is convenient for implementation.
(a) Assuming that ‖I − ωA‖ < 1, derive an estimate on ‖xm − x‖ that goes to 0

geometrically as m→∞.
(b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate
‖I−ωA‖ in terms of λ1, λn, and ω. Here λ1 and λn are the smallest and the largest
eigenvalues of A, respectively.

(c) In the estimate derived in (b), optimize the choice of the parameter ω.


