MATH 387 ASSIGNMENT 2

DUE FRIDAY FEBRUARY 23

Note: You are encouraged to type your solutions in LATEX.

1. In each of the following cases, analyze the convergence of the fixed point iteration

$$x_{n+1} = \phi(x_n),$$

for computing the solutions of f(x) = 0. That is, how do the existence as well as the value of the limit $\lim x_n$ depend on the initial guess x_0 , and what is the order of convergence? Sketch a cobweb plot of the iteration.

- (a) $\phi(x) = x^2 2$, $f(x) = x^2 x 2$.
- (b) $\phi(x) = -\sqrt{x+2}, f(x) = x^2 x 2.$
- (b) $\varphi(x) = -\sqrt{x} + 2$, f(x) = x 2 2. (c) $\phi(x) = x 2 + \frac{x}{x-1}$, $f(x) = \frac{2x^2 3x 2}{x-1}$. 2. In each of the following cases, propose two different fixed point methods for approximating the root $x = \alpha$ of f(x) = 0, such that one method is linearly convergent, and the other is quadratically convergent. Give detailed proofs of convergence.
 - (a) $f(x) = e^{-x} \sin x$, and α is the smallest positive root.
 - (b) $f(x) = x \cos x$, and α is the smallest positive root.
- 3. (Trefethen-Bau) Recall that Gaussian elimination yields a factorization A = LU, where L has unit diagonal but U in general does not. Describe the factorization that results if this process is varied in the following ways.
 - (a) Elimination by columns from left to right, rather than by rows from top to bottom, so that A is made lower triangular.
 - (b) Gaussian elimination applied after a preliminary scaling of the columns of A by a diagonal matrix D. What form does a system Ax = b take under this rescaling? Is it the equations or the unknowns that are rescaled by D?
 - (c) Gaussian elimination carried further, so that after A (assumed nonsingular) is brought to upper triangular form, additional operations ("backward elimination") are carried out so that this upper triangular matrix is made diagonal.

4. (Trefethen-Bau) Gaussian elimination PA = LU can be used to compute the inverse A^{-1} of a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, although it is rarely really necessary to do so.

- (a) Describe an algorithm for computing A^{-1} by solving n systems of equations, and show that the number of floating point multiplication/division operations taken by the algorithm is bounded by $Cn^3 + O(n^2)$ as $n \to \infty$. What is the best value for C?
- (b) Describe a variant of your algorithm, taking advantage of sparsity, that reduced the operation count to $cn^3 + O(n^2)$ with $c \sim C/2$.

Date: Winter 2018.

DUE FRIDAY FEBRUARY 23

- (c) Suppose one wishes to solve m systems of equations $Ax^{(k)} = b^{(k)}, k = 1, ..., m$, or equivalently, a block system AX = B with $B \in \mathbb{R}^{n \times m}$. What is the asymptotic operation count (a function of n and m) for doing this (i) directly from the LU factorization, and (ii) with a preliminary computation of A^{-1} ?
- 5. Let $A \in \mathbb{R}^{m \times n}$, and consider the matrix-vector multiplication problem $(A, x) \mapsto y = Ax$, where $x \in \mathbb{R}^n$. Let $\tilde{y} \in \mathbb{R}^n$ be the result of a computation of Ax in floating point arithmetic (with the "machine epsilon" $\varepsilon > 0$). Show that there exists a matrix \tilde{A} , such that $\tilde{A}x = \tilde{y}$ in exact arithmetic and that the entries of $\tilde{A} - A$ can be bounded in absolute value by an expression depending only on ε , n, m, and A. Argue that matrix-vector multiplication is backward stable. Then estimate the error $\|\tilde{y} - y\|$.

 $\mathbf{2}$