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Problem 1

Analyze the convergence of the fixed point iteration

xn+1 = xn + κ sinxn,

for computing the solutions of sin(x) = 0, where κ 6= 0 is a constant. That is, how do the
existence as well as the value of the limit limxn depend on the initial guess x0, and what
is the order of convergence? Of course, the answers will most likely depend on the value
of κ. Sketch a cobweb plot of the iterations.

Solution

Let φ(x) = x+ κ sinx. If xn → α for some α, then xn+1 = φ(xn)→ φ(α) by continuity,
meaning that xn → φ(α). Hence we conclude that α = φ(α), that is, α must be a fixed
point of φ. The fixed points of φ are easily found to be

α = πm, m ∈ Z.
We know that the local behaviour of the iteration is dictated by the derivatives

φ′(πm) = 1 + (−1)mκ.

For m even, α = πm is a stable fixed point when −2 < κ < 0, and unstable when κ < −2
or κ > 0. For m odd, α = πm is a stable fixed point when 0 < κ < 2, and unstable when
κ < 0 or κ > 2. This information is better displayed as a table:

κ < −2 −2 < κ < 0 0 < κ < 2 κ > 2
m even unstable stable unstable unstable
m odd unstable unstable stable unstable

Case κ < −2 or κ > 2. To clarify what we mean by stable and unstable fixed points, let
α be a fixed point, and let x ≈ α. Then we have

φ(x)− α = φ′(α)(x− α) +O(|x− α|2), (1)

and so if |x − α| is sufficiently small, then |φ′(α)| > 1 implies |φ(x) − α| > |x − α|, and
|φ′(α)| < 1 implies |φ(x) − α| < |x − α|. This means that when κ < −2 or κ > 2, one
cannot have the convergence xn → α with xn 6= α, cf. Figure 1. The only possibility of
convergence in this case is if xn = α for some finite n. However, in order to have xn = α,
the initial condition x0 must be carefully chosen (In fact there are only countably many
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possibilities), and this type of “convergence” would never occur in practice. One of the
initial conditions shown in Figure 1(b) almost leads to x2 = 2π, but if we zoom in on the
region around the fixed point α = 2π, we would reveal that there is no convergence.

(a) κ = 2.2 (b) κ = −2.2

Figure 1. Cobweb diagrams for unstable fixed points.

Case 0 < κ ≤ 1. In this case, the fixed points πm with odd m are stable, and the fixed
points πm with even m are unstable. By periodicity, it is sufficient to look at only the
interval [0, 2π]. We observe from Figure 2(a) that the sequence {xn} is monotone. To prove
this, first, note that as long as κ > 0, we have

φ(x) > x for 0 < x < π, and φ(x) < x for π < x < 2π. (2)

Thus if the sequence {xn} stays in either one of the intervals (0, π) or (π, 2π), then the
sequence would be strictly increasing or decreasing. Moreover,

φ′(x) = 1 + κ cosx > 0 for x ∈ (0, π) ∪ (π, 2π),

that is, φ is strictly increasing, provided that κ ≤ 1. Since φ(π) = π, this shows that

x < φ(x) < π for 0 < x < π, and π < φ(x) < x for π < x < 2π.

In other words, if x0 ∈ (0, π), then {xn} is a strictly increasing sequence, bounded above
by π, and if x0 ∈ (π, 2π), then {xn} is a strictly decreasing sequence, bounded below by π.
In either case, the sequence converges, and as we have reasoned earlier, the limit must be
a fixed point. However, the only fixed point in the interval (0, 2π) is π, and hence xn → π
as n→∞. From (1), the convergence is linear for 0 < κ < 1, and quadratic for κ = 1.
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Exercise: What happens when x0 ∈ (2kπ, 2kπ + 2π), or x0 = 2kπ?

(a) κ = 1 (b) κ = 1.8

Figure 2. Stable fixed points present.

Case 1 < κ < 2. As before, let us restrict ourselves to the interval (0, 2π). Since κ > 0,
we still have the property (2). Figure 2(b) shows that we no longer have monotonicity of
the sequence {xn}, and hence we cannot resort to a monotonicity argument as in the case
0 < κ ≤ 1.

(a) Note that φ′′(x) = −κ sinx. Then since

φ′′(π2 ) = −κ, and φ′′(3π2 ) = κ,

there is δ0 > 0 small enough, such that

φ′′(x) ≤ −1 for x ∈ [π2 ,
π
2 + δ0], and φ′′(x) ≥ 1 for x ∈ [3π2 − δ0,

3π
2 ].

This implies that
φ′(x) ≤ 1− δ for x ∈ [π2 + δ, 3π2 − δ],

as long as 0 < δ ≤ δ0.
(b) The function φ(x) is increasing when x ∈ [0, π2 + δ] provided that δ > 0 is sufficiently

small, so if x ∈ (0, π2 + δ), then

φ(x) ≤ φ(π2 + δ) ≤ φ(π2 ) + δ = π
2 + κ+ δ,

where we have taken into account that φ′(ξ) ≤ 1 for ξ ∈ [π2 ,
π
2 + δ]. Now, by choosing δ > 0

small, we can guarantee that π
2 + κ + δ < 3π

2 , so that x ∈ (0, π2 + δ) implies φ(x) < 3π
2 .

What this means is that if x0 ∈ (0, π2 + δ), then we have either xm ∈ [π2 + δ, 3π2 − δ] for
some m, or xn <

π
2 + δ for all n. In the latter case, since {xn} is monotonically increasing
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and bounded, it must converge to some point in (0, π2 + δ]. However, the map φ has no
fixed point in the interval (0, π2 + δ], leading to contradiction. Therefore, if x0 ∈ (0, π2 + δ)

then xm ∈ [π2 + δ, 3π2 − δ] for some m. The case x0 ∈ (3π2 − δ, 2π) can be treated similarly,

and we conclude that for any x0 ∈ (0, 2π), there is some m such that xm ∈ [π2 + δ, 3π2 − δ].
(c) Finally, we want to show that if xm ∈ [π2 + δ, 3π2 − δ] for some m, then xn → π as

n → ∞. The minimum of φ′(x) is attained at x = π, which is φ′(π) = 1 − κ. Hence we
infer

|φ′(x)| ≤ ρ := max{1− δ, κ− 1} < 1 for x ∈ [π2 + δ, 3π2 − δ],
leading to

|φ(x)− π| =
∣∣∣ ∫ x

π
φ′(t) dt

∣∣∣ ≤ ρ|x− π| for x ∈ [π2 + δ, 3π2 − δ].

Since ρ < 1, we conclude that if xm ∈ [π2 + δ, 3π2 − δ] for some m, then xn → π as n→∞.
As discussed before, the convergence is linear in this case, cf. (1).

Exercise: Treat the case −2 < κ < 0, cf. Figure 3(a).

(a) κ = −1.8 (b) κ = 2

Figure 3. Negative κ and the borderline case κ = 2.

Case κ = 2. This case is a bit more delicate because φ′(π) = −1. If φ was simply a line
with slope −1, then there would be no convergence. However, in the current situation we
have φ′(x) = 1 + 2 cosx > −1 for x ∈ (π − ε, π) ∪ (π, π + ε) with ε > 0 small. Thus we
conjecture that xn → π as n→∞, for x0 ∈ (0, 2π), cf. Figure 3(b).
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To prove the conjecture, we can reuse the arguments (a) and (b) from the preceding
case (0 < κ < 2) without any modifications. Namely, we can choose δ > 0 small, as in the
preceding case, such that x0 ∈ (0, 2π) implies xm ∈ [π2 + δ, 3π2 − δ] for some m, and that

φ′(x) ≤ 1− δ for x ∈ [π2 + δ, 3π2 − δ].

The argument (c) breaks down because minφ′ = φ′(π) = −1. Consider the set

Kε = [π2 + δ, π − ε] ∪ [π + ε, 3π2 − δ].

In this set, we have φ′ > −1, and so

|φ′(x)| ≤ ρε for x ∈ Kε,

with some ρε < 1, possibly depending on ε > 0. Let x ∈ [π + ε, 3π2 − δ]. Then we have

|φ(x)− π| ≤
∣∣∣ ∫ π+ε

π
φ′(t) dt

∣∣∣+
∣∣∣ ∫ x

π+ε
φ′(t) dt

∣∣∣ ≤ ε+ ρε|x− π − ε| ≤ ρε|x− π|+ (1− ρε)ε.

Similarly, for x ∈ [π2 + δ, π − ε], we have

|φ(x)− π| ≤
∣∣∣ ∫ π−ε

x
φ′(t) dt

∣∣∣+
∣∣∣ ∫ π

π−ε
φ′(t) dt

∣∣∣ ≤ ρε|π − ε− x|+ ε ≤ ρε|x− π|+ (1− ρε)ε.

Now suppose that xm ∈ Iε. Then we have

|xm+1 − π| ≤ ρε|xm − π|+ (1− ρε)ε,
|xm+2 − π| ≤ ρ2ε|xm − π|+ ρε(1− ρε)ε+ (1− ρε)ε,
|xm+3 − π| ≤ ρ3ε|xm − π|+ ρ2ε(1− ρε)ε+ ρε(1− ρε)ε+ (1− ρε)ε,

. . .

|xm+k − π| ≤ ρkε |xm − π|+ (1 + ρε + . . .+ ρk−1ε )(1− ρε)ε ≤ ρkε |xm − π|+ ε,

and hence |xn − π| ≤ 2ε for all large n. Since this is true for any ε > 0, we conclude that
xn → π as n→∞.

Exercise: Determine the exact order of convergence for the case κ = 2.
Exercise: Treat the case κ = −2.

Problem 4

Consider the polynomial

p(x) = a0 + a1x+ . . .+ anx
n,

as a function p : [0, 1] → R, where a0, . . . , an ∈ R. Let α = p(y), with y ∈ [0, 1] given,
and let α̃ ∈ R be the result of a computation of p(y) in floating point arithmetic, with the
“machine epsilon” ε > 0. Show that there exists a polynomial p̃ of degree at most n, such
that p̃(y) = α̃ in exact arithmetic and that

‖p− p̃‖∞ = max
x∈[0,1]

|p(x)− p̃(x)| ≤ Cε, (3)
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for all small ε > 0, where C may depend on n and the coefficients of the polynomial p.
Argue that evaluation of polynomials is backward stable, and estimate the error |α̃− α|.

Solution

We consider the following simple algorithm

α̃ = a0 ⊕ (a1 ⊗ y)⊕ . . .⊕ (an ⊗ y ⊗ · · · ⊗ y). (4)

Let

b̃jk = aj ⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
k times

.

Then we have b̃j,0 = aj , and

b̃jk = b̃j,k−1y(1 + δjk) = ajy
k(1 + δj,1) · · · (1 + δjk),

where |δji| ≤ ε. With these notations, we have

α̃ = b̃0,0 ⊕ b̃1,1 ⊕ . . .⊕ b̃n,n,

and hence

α̃ = (. . . ((b̃0,0 + b̃1,1)(1 + ε1) + b̃2,2)(1 + ε2) + . . .+ b̃n,n)(1 + εn)

= (b̃0,0 + b̃1,1)(1 + ε1) · · · (1 + εn) + b̃2,2(1 + ε2) · · · (1 + εn) + . . .+ b̃n,n(1 + εn),

where |εk| ≤ ε. Now it is clear that the polynomial

p̃(x) = ã0 + ã1x+ . . .+ ãnx
n,

with the coefficients defined by

ã0 = a0(1 + ε1) · · · (1 + εn),

ã1 = a1(1 + δ1,1)(1 + ε1) · · · (1 + εn),

ã2 = a2(1 + δ2,1)(1 + δ2,2)(1 + ε2) · · · (1 + εn),

. . .

ãk = ak(1 + δk,1) · · · (1 + δk,k)(1 + εk) · · · (1 + εn),

. . .

ãn = an(1 + δn,1) · · · (1 + δn,n)(1 + εn),

yields

α̃ = p̃(y) ≡ ã0 + ã1y + . . .+ ãny
n.

Next, we need to estimate the norm ‖p− p̃‖∞. We start with

|ãk − ak| ≤ |ak| · |(1 + δk,1) · · · (1 + δk,k)(1 + εk) · · · (1 + εn)− 1|
≤ |ak| · |(1 + ε)n+1 − 1|.
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Then taking into account

(1 + ε)k =
k∑
i=0

k(k − 1) · · · (k − i+ 1)

1 · 2 · · · i
εi ≤

k∑
i=0

(kε)i ≤
∞∑
i=0

(kε)i =
1

1− kε
,

which is valid for kε < 1, we infer

|ãk − ak| ≤
( 1

1− (n+ 1)ε
− 1
)
|ak| =

(n+ 1)ε

1− (n+ 1)ε
|ak|,

for (n+ 1)ε < 1. Now, for 0 ≤ x ≤ 1, we have

|p̃(x)− p(x)| ≤
n∑
k=0

|ãk − ak||x|k ≤
n∑
k=0

|ãk − ak|

≤ (n+ 1)ε

1− (n+ 1)ε

n∑
k=0

|ak|

≤ 2(n+ 1)ε
n∑
k=0

|ak|,

for (n+ 1)ε ≤ 1
2 . This is the desired stability estimate (3) with

C = 2(n+ 1)
n∑
k=0

|ak|.

In the context where we interpret the evaluation p(y) as a map p 7→ p(y) : Pn → R,
backward stability means that the computed value α̃ of p(y) can be thought of as the exact
evaluation p̃(y) of a polynomial p̃, where p̃ is within the distance Cε of p. If we use the
uniform norm ‖ · ‖∞ to measure the distance between polynomials, what we have achieved
is exactly backward stability of the polynomial evaluation algorithm (4).

Finally, for the error |α̃− α|, we have the following estimate

|α̃− α| = |p̃(y)− p(y)| ≤ ‖p̃− p‖∞ ≤ 2(n+ 1)ε

n∑
k=0

|ak|,

where ε > 0 and n are assumed to satisfy (n+ 1)ε ≤ 1
2 .
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Problem 5(a)

Find the minimax polynomial approximation of degree 2 for the function f(x) = sinx
on the interval [−1, 1].

Solution

Since sinx is an odd function on [−1, 1], the minimax polynomial p(x) must also be odd.
Moreover, assuming the form p(x) = ax2 + bx+ c, we infer that a = c = 0. In view of the
Chebyshev oscillation theorem, we need to choose the coefficient b such that f(x) − p(x)
takes the values ±‖f − p‖∞ at least 4 times, with alternating signs. From Figure 4 it is
clear that b must be in the range sin 1 < b < 1. Then the local maximums and minimums
of f(x)− p(x) are achieved at ±1 and ±ξ, where ξ ∈ (0, 1) satisfies f ′(ξ)− p′(ξ) = 0, i.e.,

cos ξ = b.

The condition for p(x) = bx to be the minimax polynomial is now

f(−1)− p(−1) = p(−ξ)− f(−ξ) = f(ξ)− p(ξ) = p(1)− f(1).

By symmetry, we only need to consider the points x = ξ and x = 1, that is,

sin ξ − bξ = b− sin 1.

In terms of ξ, this becomes

(ξ + 1) cos ξ = sin ξ + sin 1,

which has a solution ξ ≈ 0.49. Finally, the minimax polynomial can be written as

p(x) = bx = x cos ξ.

1

b

sin 1

Figure 4. The graphs of y = sinx (blue) and y = bx (red).
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Problem 6(b)

Compute weights and nodes of the quadrature formula∫ 1

0

f(x) dx√
x
≈ ω0f(x0) + ω1f(x1),

so that the order of the quadrature is maximum.

Solution

We know from the Gauss-Jacobi theory that the maximum degree of exactness of a
quadrature with 2 nodes is 3. Thus we impose

ω0 + ω1 =

∫ 1

0

dx√
x

= 2,

ω0x0 + ω1x1 =

∫ 1

0

x dx√
x

=
2

3
,

ω0x
2
0 + ω1x

2
1 =

∫ 1

0

x2dx√
x

=
2

5
,

ω0x
3
0 + ω1x

3
1 =

∫ 1

0

x3dx√
x

=
2

7
.

(5)

In order to find the nodes x0 and x1, let

π(x) = (x− x0)(x− x1) = x2 + px+ q,

and derive equations for p and q from (5). First, we multiply the equations in (5) by q, p,
1, and 0, respectively, and sum them, to get

2q +
2

3
p+

2

5
= 0.

Next, by performing the same operation with the coefficients 0, q, p, and 1, we infer

2

3
q +

2

5
p+

2

7
= 0.

The solution of this system is

p = −6

7
, q =

3

35
,

and the roots of π(x) = x2 + px+ q are

x0 =
3

7
− 2

7

√
6

5
, x1 =

3

7
+

2

7

√
6

5
.

With these nodes, the first two equations in (5) yield

ω0 = 1 +
1

3

√
5

6
, ω1 = 1− 1

3

√
5

6
.
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Problem 8(d)

Find the least squares approximation polynomials of degrees 0, 1 and 2 for the function
f(x) = |x| on the interval (−1, 1) with respect to the weight function w(x) ≡ 1.

Solution

Let pn ∈ Pn be the least squares approximation of f from Pn. Then a characteristic
property of pn is that the error f − pn must be orthogonal to Pn, i.e.,∫ 1

−1
(f(x)− pn(x))xkdx = 0 k = 0, . . . , n.

If we express pn in terms of the monomial basis {1, x, x2, . . .}, this leads to a Vandermonde
type system. A more convenient option is to write pn in terms of a basis that is orthogonal
with respect to the given inner product, in which case one needs to solve a diagonal system.
However, for the current problem, we shall use an ad hoc approach.

Let us start with the n = 0 case. Here, we need to find a constant c such that f − c is
orthogonal to all constants (or equivalently, to the constant function 1).∫ 1

−1
(f(x)− c) dx = 0 =⇒ c

∫ 1

−1
dx =

∫ 1

−1
f(x) dx.

This simply means that c is equal to the average of f :

p0(x) ≡ c =
1

2

∫ 1

−1
|x|dx =

1

2
.

Now we consider n = 1. Let p1(x) = ax+ b. First of all, we require∫ 1

−1
(|x| − ax− b)x dx = 0.

Since |x| − b is an even function, the integral of (|x| − a)x over (−1, 1) is 0. This means
that the integral of ax2 must be 0, implying that a = 0. Thus p1 is a constant, and since
f − p1 must be orthogonal to constants, we conclude that p1 = p0.

Finally, let n = 2 and p2(x) = ax2 + bx+ c. As in the preceding case, a parity argument
gives the constraint b = 0. The remaining conditions are∫ 1

−1
(|x| − ax2 − c) dx = 0,

∫ 1

−1
(|x| − ax2 − c)x2dx = 0.

Upon integration, we get

2c+
2

3
a = 1,

2

3
c+

2

5
a = 1,

yielding a = 15
4 and c = −3

4 . The conclusion is that

p2(x) =
15x2 − 3

4
.

See Figure 5 for an illustration.
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y

x

Figure 5. The graphs of y = |x| (blue), y = p0(x) (green), and y = p2(x) (red).
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