MATH 387 PRACTICE PROBLEMS

WINTER 2016

1. Analyze the convergence of the fixed point iteration

$$x_{n+1} = x_n + \kappa \sin x_n,$$

for computing the solutions of $\sin(x) = 0$, where $\kappa \neq 0$ is a constant. That is, how do the existence as well as the value of the limit $\lim x_n$ depend on the initial guess x_0 , and what is the order of convergence? Of course, the answers will most likely depend on the value of κ . Sketch a cobweb plot of the iterations.

- 2. Show that the equation $e^x = x + 2$ has two real solutions, $\alpha < 0$ and $\beta > 0$. Letting x_0, x_1, \ldots denote the iterates of the Newton-Raphson method applied to this equation, show that if $x_0 < 0$ then $x_n \to \alpha$ as $n \to \infty$, and if $x_0 > 0$ then $x_n \to \beta$ as $n \to \infty$.
- 3. Show that the Steffensen method

$$x_{n+1} = x_n - \frac{[f(x)]^2}{f(x_n + f(x_n)) - f(x_n)}$$

for solving the equation f(x) = 0 converges quadratically, if the initial guess x_0 is sufficiently close to a solution.

4. Consider the polynomial

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n,$$

as a function $p: [0,1] \to \mathbb{R}$, where $a_0, \ldots, a_n \in \mathbb{R}$. Let $\alpha = p(y)$, with $y \in [0,1]$ given, and let $\tilde{\alpha} \in \mathbb{R}$ be the result of a computation of p(y) in floating point arithmetic, with the "machine epsilon" $\varepsilon > 0$. Show that there exists a polynomial \tilde{p} of degree at most n, such that $\tilde{p}(y) = \tilde{\alpha}$ in exact arithmetic and that

$$\|p - \tilde{p}\|_{\infty} = \max_{x \in [0,1]} |p(x) - \tilde{p}(x)| \le C\varepsilon,$$

for all small $\varepsilon > 0$, where C may depend on n and the coefficients of the polynomial p. Argue that evaluation of polynomials is backward stable, and estimate the error $|\tilde{\alpha} - \alpha|$.

5. In each of the following cases, find the minimax polynomial approximation of degree n for the function f(x) on the interval [a, b]. You need to prove that the polynomial you found is indeed the minimax polynomial.

(a) $f(x) = \sin x$, [a, b] = [-1, 1], n = 2. (b) $f(x) = \cos x^2$, [a, b] = [-1, 1], n = 3.

(c)
$$f(x) = |x|, [a, b] = [-1, 2], n = 1.$$

Date: April 15, 2016.

6. Compute weights and nodes of the quadrature formula

$$\int_0^1 f(x)w(x) \,\mathrm{d}x \approx \omega_0 f(x_0) + \omega_1 f(x_1),$$

so that the order of the quadrature is maximum, where the weight function is

- (a) $w(x) = \log \frac{1}{x}$.
- (b) $w(x) = \frac{1}{\sqrt{x}}$. 7. Construct orthogonal polynomials of degrees 0, 1, and 2 on the interval (0,1) with respect to the weight function

(a)
$$w(x) = \log \frac{1}{x}$$

- (a) $w(x) = \log \frac{1}{x}$. (b) $w(x) = \frac{1}{\sqrt{x}}$. 8. In each of the following cases, find the least squares approximation polynomials of degrees 0, 1 and 2 for the function f(x) on the interval (a, b) with respect to the weight function $w(x) \equiv 1$.
 - (a) $f(x) = \sin x, (a, b) = (-\pi, \pi).$
 - (b) $f(x) = \sin x, (a, b) = (-\frac{\pi}{2}, \frac{\pi}{2}).$ (c) $f(x) = \sin x, (a, b) = (0, \pi).$

 - (d) f(x) = |x|, (a, b) = (-1, 1).