
MATH 387 TAKE HOME FINAL EXAM

DUE WEDNESDAY APRIL 27, 23:00 EDT

Notes and instructions

• Please submit by email a single PDF file, typed in LATEX.
• The subject line of the email should be:

[Math 387 Final Exam] %name %n

where %name is your name, and %n is the version number. The latest version is the
version to be graded.
• Clearly identify your name in the document.
• The grading will be based on quality of presentation, completeness, correctness,

and creativity/resourcefulness.
• Pay special attention to quality and style of presentation. Try to write a story,

rather than a list of disconnected items. Low quality presentations will not be
accepted and will receive a grade of 0.
• The following languages are allowed in the coding part: C, C++, Java, Matlab. You

should contact the instructor if you want to use a language that is not listed here.

Background material

In this exercise, we will perform an experimental study of the Lebesgue constants for
various interpolation, least squares approximation, and quadrature processes.

Recall that the Lebesgue constants for Lagrange interpolation are defined as

‖Ln‖ = sup
f∈C([a,b])

‖Lnf‖∞
‖f‖∞

,

where Lnf ∈ Pn is the Lagrange interpolation polynomial for f , associated to the given
set of (distinct) nodes x0, . . . , xn. The Lebesgue constants are of importance because

(i) We have

‖f − Lnf‖∞ ≤ (1 + ‖Ln‖) inf
q∈Pn

‖f − q‖∞,

which gives information on how the interpolation compares to the minimax approxi-
mation, and how we can use the theory of minimax approximation (Jackson’s theorem,
Taylor expansions, etc.) to derive error estimates for interpolation.
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(ii) ‖f−Lnf‖∞ → 0 as n→∞ implies that supn ‖Ln‖ <∞. So if the Lebesgue constants
are not uniformly bounded, there is a function f ∈ C([a, b]) such that Lnf 6→ f as
n→∞.

(iii) A large Lebesgue constant would indicate numerical instability (i.e., amplification of
round-off errors).

Consider the inner product and the corresponding norm

〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx, and ‖f‖ =

√
〈f, f〉,

respectively, for functions defined on (a, b), where w ∈ C((a, b)) is a (positive) weight
function. For f ∈ C((a, b)) with ‖f‖ <∞, let Snf ∈ Pn be the least-squares approximation
of f with respect to the norm ‖ · ‖, i.e., Snf is the orthogonal projection of f onto Pn.
Then the Lebesgue constant for the least-squares approximation is

‖Sn‖ = sup
f∈C([a,b])

‖Snf‖∞
‖f‖∞

.

In terms of the Lebesgue constants, we have the error estimate

‖f − Snf‖∞ ≤ (1 + ‖Sn‖) inf
q∈Pn

‖f − q‖∞,

for the least-squares approximations, and other results analogous to those for interpolation.
Given a sequence φ0, φ1, . . . of polynomials, such that {φ0, . . . , φn} is an orthonormal basis
of of Pn with respect to the inner product 〈·, ·〉 for each n, we have

Snf =

n∑
k=0

〈f, φk〉φk.

In this context, Snf is also called a truncation of the series of f in terms of the polyno-
mials {φk}. For example, we can talk about Legendre truncation or Chebyshev truncation,
depending on the polynomials under consideration.

Finally, consider the quadrature formula

Qn(f) =

n∑
k=0

ωkf(xk),

that is meant to approximate the integral

I(f) =

∫ b

a
f(x)w(x)dx,

where w > 0 is a given weight function. Assuming that Qn(f) = I(f) for f ∈ Pm, we can
derive the error estimate

|Qn(f)− I(f)| ≤ (‖I‖+ ‖Qn‖) inf
q∈Pm

‖f − q‖∞,
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where

‖I‖ = sup
f∈C([a,b])

|I(f)|
‖f‖∞

=

∫ b

a
w(x)dx,

and

‖Qn‖ = sup
f∈C([a,b])

|Qn(f)|
‖f‖∞

.

Therefore ‖Qn‖ plays the role of Lebesgue constants for quadrature formulas. It is easy
to see that ‖Qn‖ = ‖I‖ if the weights ω are positive and the degree of exactness satisfies
m ≥ 0. So the constants ‖Qn‖ may potentially grow with n only if negative weights occur
in the quadrature formula.

The exercise

(a) Show that

‖Ln‖ = max
x∈[a,b]

n∑
k=0

|φn,k(x)|, (1)

where φn,k is the k-th Lagrange coefficient associated to the nodes x0, . . . , xn.
(b) For Chebyshev truncation, we have derived in class that

‖Sn‖ =

∫ π

0

∣∣∣sin((n+ 1
2)θ)

2 sin(12θ)

∣∣∣dθ. (2)

Derive an expression of the form

‖Sn‖ =

∫ 1

−1

∣∣∣ n∑
k=0

akPk(x)
∣∣∣dx, (3)

for the Lebesgue constants of the Legendre truncation, where Pk are the Legendre
polynomials.

(c) For interpolatory quadrature with the nodes x0, . . . , xn, for approximating the integral
over (a, b) with weight w(x) = 1, show that

‖Qn‖ =

n∑
k=0

|ωk| =
n∑
k=0

∣∣∣ ∫ b

a
φn,k(x)dx

∣∣∣, (4)

where φn,k is the k-th Lagrange coefficient associated to the nodes x0, . . . , xn.
(d) For Chebyshev interpolation (cf. (1)), the function

λn(x) =
n∑
k=0

|φn,k(x)|,

takes its maximum at x = ±1, so in order to compute the Lebesgue constant ‖Ln‖, we
only need to be able to evaluate the Lagrange coefficients φn,k. Plotting the graph (of
a function) of ‖Ln‖ against n, experimentally determine the constant C in the assumed
dependence ‖Ln‖ = C log n.
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(e) For interpolation with equidistant nodes, the function λn as above achieves its maxi-
mum in the “outermost” subintervals, that is, in the intervals (x0, x1) and (xn−1, xn).
So in order to compute the Lebesgue constant ‖Ln‖, we need to locate one of the global
maximums. Implement Newton’s method and apply it to the derivative λ′n to complete
this task. One possible initial guess is to start at the midpoint of the interval (x0, x1).
Make sure that Newton’s method converges to the desired zero of λ′n. Plot the graph
(of a function) of ‖Ln‖ against n, and experimentally confirm the law ‖Ln‖ ∼ 2n.

(f) To compute the Lebesgue constants for Chebyshev truncation, we need to evaluate
the integrals (2). Design and implement composite trapezoidal or Simpson’s rule for
this task. When you design the quadrature rule, make sure that you take into account
the behaviour of the integrand especially for large n. For example, one could choose
the subintervals of the composite quadrature rule to be aligned with the zeroes of
the integrand. Plotting the graph (of a function) of ‖Sn‖ against n, experimentally
determine the constant C in the assumed dependence ‖Sn‖ = C log n.

(g) Design and implement a quadrature rule for the integrals (3), to compute the Lebesgue
constants for Legendre truncation. Plotting the graph (of a function) of ‖Sn‖ against
n, experimentally determine the constant C in the assumed dependence ‖Sn‖ = C

√
n.

(h) We want to show some evidence that for Newton-Cotes formulas, ‖Qn‖ grows with
n. This would indicate that Qn(f) 6→ I(f) as n → ∞. Design and implement a
procedure to compute the weights ωk, and therefore the “Lebesgue constant” ‖Qn‖
for the Newton-Cotes formula with n + 1 nodes, for the interval, say [0, 1]. This can
be done by a quadrature rule for the integrals in (4), or by solving a Vandermonde
type system. If you choose the latter, make sure that you do not run into a numerical
instability problem due to the conditioning of the matrices. Plotting the graph (of a
function) of ‖Qn‖ against n, make a guess on the functional dependence of ‖Qn‖ on n.
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