
MATH 387 ASSIGNMENT 4

DUE THURSDAY APRIL 14

1. Let ρ ∈ C(R) be a nonnegative function satisfying∫
R
ρ(x) dx = 1, and ρ(x) = 0 for |x| > 1.

For example, one can take

ρ(x) = max{0, 1− |x|}.
Then for ε > 0, define

ρε(x) =
1

ε
ρ(x/ε).

Note that ρε satisfies∫
R
ρε(x) dx = 1, and ρε(x) = 0 for |x| > ε.

Now, suppose that x0, x1 . . . , xn are distinct points in some interval (a, b), and consider
the weight function

wε(x) = ρε(x− x0) + ρε(x− x1) + . . .+ ρε(x− xn),

for small ε > 0. Let f ∈ C([a, b]), and let pε ∈ Pn be the least-squares approximation of
f with respect to the weight wε. Informally speaking, the weight wε tries to drive the
approximation to be accurate in the regions near the nodes x0, x1 . . . , xn. Show that

‖pε − p‖∞ → 0 as ε→ 0,

where p ∈ Pn is the Lagrange interpolation polynomial of f with the nodes {x0, x1 . . . , xn}.
2. For functions f ∈ C([a, b]) where −∞ < a < b < ∞, and for 1 < p < ∞, define the
p-norm

‖f‖p =
(∫ b

a
|f(x)|pdx

) 1
p
,

and consider the problem of approximating f by polynomials in the p-norm: Find q ∈ Pn
such that ‖f − q‖p is minimal.
(a) Show that for any f ∈ C([a, b]), there exists gn ∈ Pn such that

‖f − gn‖p = inf
q∈Pn

‖f − q‖p.

(b) Show that the best approximation gn ∈ Pn as in (a) is unique.
(c) Show that gn converges to f in the p-norm as n→∞.
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(d) Design an algorithm to compute gn.
3. Consider the inner product and the corresponding norm

〈f, g〉 =

∫
R
f(x)g(x)e−x

2
dx, and ‖f‖ =

√
〈f, f〉,

respectively, for functions defined on R = (−∞,∞). Starting with the monomials
1, x, x2, . . ., one can generate orthogonal polynomials with respect to the inner product
〈·, ·〉. Up to a normalization, these are called the Hermite polynomials.
(a) Compute the first 6 Hermite polynomials, with the normalization that the leading

coefficient of the n-th degree Hermite polynomial is 2n.
(b) Let f ∈ C(R), and suppose that for some m,

sup
x∈R

|f(x)|
1 + |x|m

<∞.

In other words, f grows slower than a polynomial at infinity. Show that there exists
a unique gn ∈ Pn such that

‖f − gn‖ = inf
q∈Pn

‖f − q‖.

(c) Show that ‖f − gn‖ → 0 as n→∞, where f and gn are as in (b).
4. In each of the following cases, compute weights and nodes of the quadrature formula∫ b

a
w(x)f(x) dx ≈ ω0f(x0) + ω1f(x1) + . . .+ ωnf(xn),

so that the order (or equivalently, the degree of exactness) of the quadrature is maximum.
(a) w(x) = 1 + θ(x), (a, b) = (−1, 1), n = 1, where θ is the Heaviside step function.
(b) w(x) = sinx, (a, b) = (0, π2 ), n = 1.
(c) w(x) = e−x, (a, b) = (0,∞), n = 3.

5. In each of the following cases, analyze the convergence of the fixed point iteration

xn+1 = φ(xn),

for computing the solutions of f(x) = 0. That is, how do the existence as well as
the value of the limit limxn depend on the initial guess x0, and what is the order of
convergence? Sketch a cobweb plot of the iteration.
(a) φ(x) = cosx, f(x) = x− cosx.
(b) φ(x) = x2 − 2, f(x) = x2 − x− 2.
(c) φ(x) = −

√
x+ 2, f(x) = x2 − x− 2.

(d) φ(x) = x− 2 + x
x−1 , f(x) = 2x2−3x−2

x−1 .
6. In each of the following cases, propose two different fixed point methods for approxi-

mating the root x = α of f(x) = 0, such that one method is linearly convergent, and
the other is quadratically convergent. Give detailed proofs of convergence.
(a) f(x) = e−x − sinx, and α is the smallest positive root.
(b) f(x) has a double root at x = α.


