MATH 387 ASSIGNMENT 2

DUE TUESDAY MARCH 8

- 1. (Trefethen-Bau) Recall that Gaussian elimination yields a factorization A = LU, where L has unit diagonal but U in general does not. Describe the factorization that results if this process is varied in the following ways.
 - (a) Elimination by columns from left to right, rather than by rows from top to bottom, so that A is made lower triangular.
 - (b) Gaussian elimination applied after a preliminary scaling of the columns of A by a diagonal matrix D. What form does a system Ax = b take under this rescaling? Is it the equations or the unknowns that are rescaled by D?
 - (c) Gaussian elimination carried further, so that after A (assumed nonsingular) is brought to upper triangular form, additional operations ("backward elimination") are carried out so that this upper triangular matrix is made diagonal.
- 2. (Trefethen-Bau) Gaussian elimination PA = LU can be used to compute the inverse A^{-1} of a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, although it is rarely really necessary to do so.
 - (a) Describe an algorithm for computing A^{-1} by solving *n* systems of equations, and show that the number of floating point multiplication/division operations taken by the algorithm is bounded by $Cn^3 + O(n^2)$ as $n \to \infty$. What is the best value for C?
 - (b) Describe a variant of your algorithm, taking advantage of sparsity, that reduced the operation count to $cn^3 + O(n^2)$ with $c \sim C/2$.
 - (c) Suppose one wishes to solve m systems of equations $Ax^{(k)} = b^{(k)}$, k = 1, ..., m, or equivalently, a block system AX = B with $B \in \mathbb{R}^{n \times m}$. What is the asymptotic operation count (a function of n and m) for doing this (i) directly from the LU factorization, and (ii) with a preliminary computation of A^{-1} ?
- 3. (a) Describe an algorithm for QR decomposition that is based on Givens rotations. Estimate the asymptotic complexity of the algorithm, and compare it to that of the Householder QR algorithm.
 - (b) Adapt the Householder QR algorithm so that it can efficiently handle the case when $A \in \mathbb{R}^{n \times m}$ has lower bandwidth p and upper bandwidth q, i.e., when $a_{ij} = 0$ for i j > p or j i > q.
 - (c) A square matrix B is called Hessenberg if $b_{ij} = 0$ for i-j > 1, i.e., if all entries below the first sub-diagonal are zero. Come up with a procedure based on Householder reflections, that constructs an orthogonal matrix Q such that $QAQ^T = B$, where A is a given square matrix, and B is a Hessenberg matrix.

Date: Winter 2016.

DUE TUESDAY MARCH 8

- 4. (Isaacson-Keller) A matrix $A = [a_{ik}] \in \mathbb{R}^{n \times n}$ is called *symmetric* if $a_{ik} = a_{ki}$ for all i, k, and is called *positive definite* if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$, with $x^T A x = 0$ only when x = 0. Suppose that $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.
 - (a) Show that $a_{ii} > 0$ for all *i*.
 - (b) Show that $\max_i a_{ii} = \max_{i,k} |a_{ik}|$.
 - (c) Let $A_k = [a_{ij}^{(k)}]$ be the matrix that enters in the k-th step of the Gaussian elimination process (with $A_1 = A$). Show that for each k = 1, ..., n, the submatrix $[a_{ij}^{(k)}]_{k \le i,j \le n}$ is symmetric and positive definite. Conclude that Gaussian elimination does not break down (hence in particular, that A is invertible).
 - (d) Show that $a_{ii}^{(k)} \leq a_{ii}^{(k-1)}$ for $k \leq i \leq n$ and for all k = 2, 3, ..., n. Conclude that for Gaussian elimination in exact arithmetics, the growth factor is 1. Note that in exact arithmetics, the growth factor would be defined by

$$g(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|}.$$

- 5. Assuming exact arithmetic, show that $g(A) \leq 2^{n-1}$ for any matrix $A \in \mathbb{R}^{n \times n}$, for Gaussian elimination with partial pivoting PA = LU.
- 6. (a) Let U be an upper triangular matrix with no zeroes on its diagonal. Let $\tilde{x} \in \mathbb{R}^n$ be the result of back-substitution applied to the system Ux = b in floating point arithmetic (with the "machine epsilon" $\varepsilon > 0$). Show that there exists an upper triangular matrix \tilde{U} , such that $\tilde{U}\tilde{x} = b$ in exact arithmetics and that the entries of $\tilde{U} U$ can be bounded in absolute value by an expression depending only on ε , n, and U. Argue that back-substitution is backward stable.
 - (b) Recall that Gaussian elimination in floating point arithmetics produces matrices L and \tilde{U} , where \tilde{L} is lower triangular with unit diagonal and \tilde{U} is upper triangular, satisfying

$$\|\tilde{L}\tilde{U} - A\|_{\infty} \le \frac{3ng\varepsilon}{(1-\varepsilon)^2} \|A\|_{\infty}.$$

Turn this into the following bound

$$||LU - A|| \le C_n g\varepsilon ||A||, \quad \text{for all small } \varepsilon,$$

where $\|\cdot\|$ is the matrix norm induced by the Euclidean norm in \mathbb{R}^n . In particular, try get a near-optimal value for the constant C_n .

- (c) By combining the preceding two results, perform a backward error analysis of the Gaussian elimination process for solving the equation Ax = b. That is, complete the analysis we did in class by taking into account the round-off errors of the forward elimination (solution of Ly = b) and back substitution (solution of Ux = y).
- 7. In class, we have shown that if K is a square matrix with ||K|| < 1, then I K is invertible, and

$$I + K + K^2 + \ldots + K^m \to (I - K)^{-1}$$
 as $m \to \infty$.

 $\mathbf{2}$

We can use this fact to design an iterative method to solve Ax = b. The starting point should be to somehow write A in terms of I - K, where K has small norm. We can write A = I - (I - A) and set K = I - A, but we would need ||I - A|| < 1 to ensure convergence. As a simple way to introduce some flexibility, let us multiply Ax = b by some number $\omega \in \mathbb{R} \setminus \{0\}$, to get

$$\omega Ax = \omega b,$$

and then introduce $K = I - \omega A$, yielding

$$(I - K)x = \omega b \qquad \Longleftrightarrow \qquad Ax = b.$$

If $||K|| = ||I - \omega A|| < 1$, then

$$x_m := (I + K + K^2 + \ldots + K^m)\omega b \to x.$$

The iterates x_m satisfy the recurrent relation

$$x_{m+1} = \omega b + K(I + K + \dots + K^m)\omega b = \omega b + Kx_m = \omega b + (I - \omega A)x_m$$
$$= x_m + \omega (b - Ax_m),$$

which is convenient for implementation.

- (a) Assuming that $||I \omega A|| < 1$, derive an estimate on $||x_m x||$ that goes to 0 geometrically as $m \to \infty$.
- (b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate $||I \omega A||$ in terms of λ_1 , λ_n , and ω . Here λ_1 and λ_n are the smallest and the largest eigenvalues of A, respectively.
- (c) In the estimate derived in (b), optimize the choice of the parameter ω .