
MATH 387 ASSIGNMENT 2

DUE TUESDAY MARCH 8

1. (Trefethen-Bau) Recall that Gaussian elimination yields a factorization A = LU , where
L has unit diagonal but U in general does not. Describe the factorization that results
if this process is varied in the following ways.
(a) Elimination by columns from left to right, rather than by rows from top to bottom,

so that A is made lower triangular.
(b) Gaussian elimination applied after a preliminary scaling of the columns of A by a

diagonal matrix D. What form does a system Ax = b take under this rescaling? Is
it the equations or the unknowns that are rescaled by D?

(c) Gaussian elimination carried further, so that after A (assumed nonsingular) is
brought to upper triangular form, additional operations (“backward elimination”)
are carried out so that this upper triangular matrix is made diagonal.

2. (Trefethen-Bau) Gaussian elimination PA = LU can be used to compute the inverse
A−1 of a nonsingular matrix A ∈ Rn×n, although it is rarely really necessary to do so.
(a) Describe an algorithm for computing A−1 by solving n systems of equations, and

show that the number of floating point multiplication/division operations taken by
the algorithm is bounded by Cn3 +O(n2) as n→∞. What is the best value for C?

(b) Describe a variant of your algorithm, taking advantage of sparsity, that reduced the
operation count to cn3 +O(n2) with c ∼ C/2.

(c) Suppose one wishes to solve m systems of equations Ax(k) = b(k), k = 1, . . . ,m, or
equivalently, a block system AX = B with B ∈ Rn×m. What is the asymptotic
operation count (a function of n and m) for doing this (i) directly from the LU
factorization, and (ii) with a preliminary computation of A−1?

3. (a) Describe an algorithm for QR decomposition that is based on Givens rotations.
Estimate the asymptotic complexity of the algorithm, and compare it to that of the
Householder QR algorithm.

(b) Adapt the Householder QR algorithm so that it can efficiently handle the case when
A ∈ Rn×m has lower bandwidth p and upper bandwidth q, i.e., when aij = 0 for
i− j > p or j − i > q.

(c) A square matrix B is called Hessenberg if bij = 0 for i−j > 1, i.e., if all entries below
the first sub-diagonal are zero. Come up with a procedure based on Householder
reflections, that constructs an orthogonal matrix Q such that QAQT = B, where A
is a given square matrix, and B is a Hessenberg matrix.
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4. (Isaacson-Keller) A matrix A = [aik] ∈ Rn×n is called symmetric if aik = aki for all i, k,
and is called positive definite if xTAx ≥ 0 for all x ∈ Rn, with xTAx = 0 only when
x = 0. Suppose that A ∈ Rn×n is symmetric and positive definite.
(a) Show that aii > 0 for all i.
(b) Show that maxi aii = maxi,k |aik|.
(c) Let Ak = [a

(k)
ij ] be the matrix that enters in the k-th step of the Gaussian elimination

process (with A1 = A). Show that for each k = 1, . . . , n, the submatrix [a
(k)
ij ]k≤i,j≤n

is symmetric and positive definite. Conclude that Gaussian elimination does not
break down (hence in particular, that A is invertible).

(d) Show that a
(k)
ii ≤ a

(k−1)
ii for k ≤ i ≤ n and for all k = 2, 3, . . . , n. Conclude that

for Gaussian elimination in exact arithmetics, the growth factor is 1. Note that in
exact arithmetics, the growth factor would be defined by

g(A) =
maxi,j,k |a

(k)
ij |

maxi,j |aij |
.

5. Assuming exact arithmetic, show that g(A) ≤ 2n−1 for any matrix A ∈ Rn×n, for
Gaussian elimination with partial pivoting PA = LU .

6. (a) Let U be an upper triangular matrix with no zeroes on its diagonal. Let x̃ ∈ Rn

be the result of back-substitution applied to the system Ux = b in floating point
arithmetic (with the “machine epsilon” ε > 0). Show that there exists an upper

triangular matrix Ũ , such that Ũ x̃ = b in exact arithmetics and that the entries of
Ũ − U can be bounded in absolute value by an expression depending only on ε, n,
and U . Argue that back-substitution is backward stable.

(b) Recall that Gaussian elimination in floating point arithmetics produces matrices L̃

and Ũ , where L̃ is lower triangular with unit diagonal and Ũ is upper triangular,
satisfying

‖L̃Ũ −A‖∞ ≤
3ngε

(1− ε)2
‖A‖∞.

Turn this into the following bound

‖L̃Ũ −A‖ ≤ Cngε‖A‖, for all small ε,

where ‖ · ‖ is the matrix norm induced by the Euclidean norm in Rn. In particular,
try get a near-optimal value for the constant Cn.

(c) By combining the preceding two results, perform a backward error analysis of the
Gaussian elimination process for solving the equation Ax = b. That is, complete the
analysis we did in class by taking into account the round-off errors of the forward
elimination (solution of L̃y = b) and back substitution (solution of Ũx = y).

7. In class, we have shown that if K is a square matrix with ‖K‖ < 1, then I − K is
invertible, and

I +K +K2 + . . .+Km → (I −K)−1 as m→∞.
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We can use this fact to design an iterative method to solve Ax = b. The starting point
should be to somehow write A in terms of I − K, where K has small norm. We can
write A = I − (I − A) and set K = I − A, but we would need ‖I − A‖ < 1 to ensure
convergence. As a simple way to introduce some flexibility, let us multiply Ax = b by
some number ω ∈ R \ {0}, to get

ωAx = ωb,

and then introduce K = I − ωA, yielding

(I −K)x = ωb ⇐⇒ Ax = b.

If ‖K‖ = ‖I − ωA‖ < 1, then

xm := (I +K +K2 + . . .+Km)ωb→ x.

The iterates xm satisfy the recurrent relation

xm+1 = ωb+K(I +K + . . .+Km)ωb = ωb+Kxm = ωb+ (I − ωA)xm

= xm + ω(b−Axm),

which is convenient for implementation.
(a) Assuming that ‖I − ωA‖ < 1, derive an estimate on ‖xm − x‖ that goes to 0

geometrically as m→∞.
(b) Assuming that A is diagonalizable, and that all its eigenvalues are positive, estimate
‖I−ωA‖ in terms of λ1, λn, and ω. Here λ1 and λn are the smallest and the largest
eigenvalues of A, respectively.

(c) In the estimate derived in (b), optimize the choice of the parameter ω.


