
MATH 387 ASSIGNMENT 1

DUE THURSDAY FEBRUARY 11

1. In this and the following exercises, we will study standard multiplication and division
algorithms in arbitrary precision floating point arithmetics. We consider those numbers
that are represented in the format

a = ±
∞∑
k=0

akβ
k+e,

where 0 ≤ ak ≤ β−1 are the digits (or “big digits”) of the mantissa that are stored in a
finite (!) array of integers, and e ∈ Z is the exponent, stored as a single integer variable
(In practice, one rarely needs exponents that go out of the 32 or 64 bit integer range).
Furthermore, β ∈ N is a fixed parameter called the base (or radix), e.g., β = 1000, chosen
to be a fairly large integer, but not exceedingly large, because among other things, we
need to be able to perform divisions on numbers of the form b0 + b1β + b2β

2 by using
the built-in CPU arithmetic.

It is clear that multiplication reduces to multiplication of two positive integers. To
multiply two positive integers, we first define the Cauchy product

ab =
(∞∑
j=0

ajβ
j
)
·
(∞∑
i=0

biβ
i
)

=
∞∑
k=0

(k∑
j=0

ajbk−j

)
βk =

∞∑
k=0

p∗kβ
k, (1)

where

p∗k =
k∑
j=0

ajbk−j , (2)

is the k-th generalized digit of ab. In general, p∗k can be larger than β − 1, and so (1) is
not the base-β expansion of the product ab. However, the proper digits 0 ≤ pk ≤ β − 1
of ab can be found by writing p∗k in base-β and then performing the summation in the
right hand side of (1) in base-β arithmetic. One way to find the base-β expansion of p∗k
would be to do the summation in (2) from the beginning in base-β arithmetic.
(a) Formulate a multiplication algorithm that is based on the double summation in

(1). In other words, we do not want to compute the generalized digits p∗k explicitly.
Write a convincing argument (i.e., proof) that your algorithm terminates in a finite
number of steps, and that it returns the correct answer. Suppose that n is the largest
index for which an 6= 0, and that m is the analogous quantity for b. Basically, n and
m measure how much storage each of a and b takes. Then estimate the number of

Date: Winter 2016.

1

2 DUE THURSDAY FEBRUARY 11

built-in arithmetic operations needed to compute the digits of ab, in terms of n and
m, when n and m are large.

(b) With the intent of saving resources, let us ignore the terms with k < k∗ in (1), with
the truncation parameter k∗, i.e., we replace the product ab by

p̃ =

∞∑
k=k∗

(k∑
j=0

ajbk−j

)
βk.

Show that

0 ≤ ab− p̃ ≤ ab · βk∗+3−n−m,

where n and m are as in (a). What would be a good choice for the value of k∗?
2. Now we consider a division algorithm in the context of the preceding problem. We

assume that a and b are positive integers. The goal is to compute the digits of q ≥ 0
and 0 ≤ r < b, satisfying

a = qb+ r.

Here and in what follows, unless otherwise specified, all variables are integer variables.
The algorithm we are going to build is an adaptation of the usual long division algorithm
we study in school. Recall that

n = max{k : ak 6= 0}, m = max{k : bk 6= 0}.

Without loss of generality, we can assume n ≥ m and a > b ≥ 2.
As a warm up, let us treat the special case m = 0 first. In this case, b has only one

digit, i.e., 2 ≤ b ≤ β−1, so division can be performed in a straightforward digit-by-digit
fashion. Thus the first step of the division algorithm would be to divide an by b, as

an = qnb+ rn,

where 0 ≤ rn < b is the remainder, and qn ≥ 0 is the quotient. Obviously, qn ≤ β − 1
because an ≤ β − 1. Computation of qn and rn should be performed in computer’s
built-in arithmetic. To proceed further, we combine rn with the (n − 1)-st digit of a,
and divide it by b, that is,

rnβ + an−1 = qn−1b+ rn−1,

where 0 ≤ rn−1 < b. Since rn < b, we are guaranteed that qn−1 ≤ β − 1. Computation
of qn−1 and rn−1 should be performed in computer’s built-in arithmetic, which imposes
an upper bound on β. This procedure is repeated until we retrieve the last digit a0, and

MATH 387 ASSIGNMENT 1 3

we finally get

a = anβ
n + . . .+ a0 = (qnb+ rn)βn + an−1β

n−1 + . . .+ a0

= qnbβ
n + (rnβ + an−1)β

n−1 + . . .+ a0

= qnbβ
n + (qn−1b+ rn−1)β

n−1 + . . .+ a0 = . . .

= qnbβ
n + qn−1bβ

n−1 + . . .+ q0b+ r0

= b

n∑
k=0

qkβ
k + r0,

(3)

which shows that qk is the k-th digit of q, and that r = r0.
In the general case m > 0, the overall structure of the algorithm does not change, but

there will be one essential new ingredient in the details. Before describing the algorithm,
let us introduce a convenient new notation. For 0 ≤ k ≤ ` let

a[k,`] = ak + ak+1β + . . .+ a`β
`−k,

which is simply the number consisting of those digits of a that are numbered by k, . . . , `.
For example, when β = 10 and a = 1532, we have a[2,4] = 15. The first step of our
algorithm is to compute qn−m and 0 ≤ rn−m < b satisfying

a[n−m,n] = qn−mb+ rn−m. (4)

Since the number of digits of a[n−m,n] is the same as that of b, we have qn−m ≤ β − 1.
Next, we compute qn−m−1 and 0 ≤ rn−m−1 < b satisfying

rn−mβ + an−m−1 = qn−m−1b+ rn−m−1. (5)

Since rn−m < b, we are guaranteed that qn−m−1 ≤ β − 1. We repeat this process until
we retrieve the last digit a0, and expect that qk’s give the digits of q.

This seems all well and good, except that there is a catch: In (4) and (5), we divide by
b, which has m+ 1 digits, and we cannot rely on the built-in arithmetic since m can be
large. We encounter the divisions (4) and (5) in each step of the paper-and-pencil long
division method. There, what helps is intuition and the fact that in practice we usually
have m not too large. Here, we need to replace intuition by a well defined algorithm.
We shall consider here an approach that is based on a few crucial observations. The
first observation is that since rn−m < b and an−m−1 < β, we have

rn−mβ + an−m−1 ≤ (b− 1)β + β − 1 = bβ − 1,

so that the left hand side of (5) has at most m+ 2 digits. Noting that the left hand side
of (4) has m+ 1 digits, we now see that (4) and (5) only require divisions of a number
not exceeding bβ − 1 by b. In other words, the original division problem a/b has been
reduced to the case a ≤ bβ − 1 (and hence with m ≤ n ≤ m + 1). This indeed helps,
because if two numbers have roughly the same number of digits, then the first few digits
of both numbers can be used to compute a very good approximation of the quotient.
For instance, it turns out that under the assumption a ≤ bβ − 1, if

a[m−1,n] = q∗b[m−1,m] + r∗, (6)

4 DUE THURSDAY FEBRUARY 11

with 0 ≤ r∗ < b[m−1,m], then

q ≤ q∗ ≤ q + 1. (7)

This means that the quotient of the number formed by the first 2 or 3 digits of a, divided
by the number formed by the first 2 digits of b, is either equal to the quotient q of a
divided by b, or off by 1. The cases q∗ = q + 1 can easily be detected (and immediately
corrected) by comparing the product q∗b with a. The division (6) can be performed in
the built-in arithmetic, because the number of digits of any of the operands therein does
not exceed 3.
(a) Assuming that we have some means to carry out the divisions (4) and (5), demon-

strate the correctness of the algorithm, that is, show that

a = r0 + b

n−m∑
k=0

qkβ
k.

(b) Now let us focus on the divisions (4) and (5), that would occur in each iteration of
the general division algorithm. Assume that m ≤ n ≤ m + 1 and a ≤ bβ − 1, and
fix some (small) integer p ≥ 0. Let q∗ and 0 ≤ r∗ < b[m−p,m] be defined by

a[m−p,n] = q∗b[m−p,m] + r∗. (8)

Derive upper and lower bounds on q∗ in terms of q. Then by using these bounds,
show that

q ≤ q∗ ≤ q + 1, (9)

as long as p ≥ 1.
(c) Describe a procedure to identify q, given that we have computed q∗ as in (b) with

p = 1. In particular, how do we tell q∗ = q or q∗ = q + 1?
(d) What would be the maximum value of β that allows the division algorithm to work

correctly, supposing that we want β to be a power of 10, and that the built-in
arithmetic can handle 64 bit integers?

3. For x > 0 large, consider the computation of e−x by truncating the Taylor series

e−x = 1− x+
x2

2
− x3

3!
+

Suppose that we are given a tolerance parameter ε > 0, and we truncate the series once
the current term becomes smaller than ε in absolute value. As the series is alternating,
in exact arithmetic we would have the error of the truncated the series bounded by ε.
(a) Explain why you would expect cancellation of digits under floating point arithmetic.

With the help of a calculator or a computer, produce a concrete and illustrative
example where such a cancellation occurs.

(b) Come up with a method to compute e−x without cancellation of digits. Show off
the performance of your method by a concrete example.

MATH 387 ASSIGNMENT 1 5

4. Let x1, x2, . . . be a sequence of floating point numbers, and let sn = x1 + . . . + xn.
Consider Kahan’s compensated summation algorithm

yn = xn + en−1

s̃n = s̃n−1 + yn

en = (s̃n−1 − s̃n) + yn, n = 1, 2, . . .

where each operation is performed in floating point arithmetic, and s̃0 = e0 = 0.
(a) Explain why you would expect the roundoff accuracy of this method to be better

than that of the naive summation method.
(b) (Note: This part will not be graded.) Show that

|s̃n − sn| ≤ [Cε+O(ε2)]

n∑
k=1

|xk|,

where C is some constant, and ε is the machine epsilon.
5. (a) Recall that the iteration (called the Babylonian method or Heron’s method)

xn+1 =
1

2

(
xn +

a

xn

)
,

for given a > 0 and x0 > 0, converges to x =
√
a > 0. Show that

xn+1 − x =
(xn − x)2

2xn
, and εn+1 =

ε2n
2(1 + εn)

,

where εn = |xn−x|
x is the relative error. Further, show that

εn+1 ≤
min{ε2n, εn}

2
.

In particular, we have εn+1 ≤ εn
2 , meaning that any initial value x0 > 0 leads to

a sequence that converges to the correct value x. Such methods are called globally
convergent. Moreover, methods with the property εn+1 ≤ qεn for some constant
0 < q < 1, are called linearly convergent. A linearly convergent method increases
the number of significant digits by a fixed amount in each iteration. Obviously, the
Babylonian method is linearly convergent, but much more is true. For some n large

enough, we would have εn < 1, and from then on, the estimate εn+1 ≤ ε2n
2 goes

into effect. This type of convergence is called quadratic, because for all n large,
εn+1 ≤ Cε2n for some constant C (We can take C = 1

2 in the current case). During
a quadratic convergence, the number of significant digits doubles in each iteration.

(b) Along the lines of the derivation we did in class for the Babylonian method, design
a quadratically convergent iteration for computing n

√
a, where n > 0 is an integer,

and a > 0. Derive a priori and a posteriori error estimators. Is the method globally
convergent? Illustrate the performance of the method by a concrete example.

(c) Design a quadratically convergent iteration for computing 1
a , that involves only mul-

tiplication and addition (Subtraction is a special case of addition). Derive a priori

6 DUE THURSDAY FEBRUARY 11

and a posteriori error estimators. Is the method globally convergent? Illustrate the
performance of the method by a concrete example.

6. (a) Let us call the functions sinx, arctanx, ex, and log x the basic functions. Then
reduce the evaluation of cosx, tanx, arcsinx, arccosx, and xa (a ∈ R) into basic
functions and elementary arithmetic operations. Here by elementary arithmetic
operations we understand addition, subtraction, multiplication, division, and n-th
root extraction n

√
x (for n > 0 integer and x > 0 real), and all variables are real (in

the sense that they are not complex variables).
(b) Reduce the argument of arctanx into [0, b], where b < 1 is to be chosen by you

(Generally, b ≈ 1
2 would be considered satisfactory). In other words, express arctanx

with x ∈ R, in terms of arctan y with 0 ≤ y ≤ b.
(c) (Note: You may choose between (c) and (d).) Perform a detailed round-off error

analysis on an algorithm that computes log y by employing the series

log
1 + x

1− x
= 2
(
x+

x3

3
+
x5

5
+ . . .

)
.

You can assume −1
2 ≤ x ≤ 1

2 in the analysis. Then describe a procedure to reduce

the argument of log x into −1
2 ≤ x ≤

1
2 .

(d) (Note: You may choose between (c) and (d).) Perform a detailed round-off error
analysis on an algorithm that computes sinx (0 < x ≤ π

4) by using its Maclaurin
series. Describe a procedure to reduce the argument of sinx into 0 < x ≤ π

4 .

Homework policy

You are welcome to consult each other provided (1) you list all people and sources who
aided you, or whom you aided and (2) you write-up the solutions independently, in your
own language. If you seek help from other people, you should be seeking general advice,
not specific solutions, and must disclose this help. This applies especially to internet fora
such as MathStackExchange.

Similarly, if you consult books and papers outside your notes, you should be looking for
better understanding of or different points of view on the material, not solutions to the
problems.

	Homework policy

