1. Let \(f(z) = y - 2xy + i(-x + x^2 - y^2) + z^2 \) where \(z = x + iy \) is a complex variable defined in the whole complex plane. For what values of \(z \) does \(f'(z) \) exist?

Solution: Our plan is to identify the real and imaginary parts of \(f \), and then check if the Cauchy-Riemann equations hold for them. We have
\[
f(z) = y - 2xy + i(-x + x^2 - y^2) + x^2 - y^2 + 2ixy = x^2 - 2xy + y - y^2 + i(-x + 2xy + x^2 - y^2),
\]
and so
\[
u(x, y) = x^2 - 2xy + y - y^2, \quad v(x, y) = -x + 2xy + x^2 - y^2.
\]
We compute the partial derivatives of \(u \) and \(v \) as
\[
u_x(x, y) = 2x - 2y,
\]
\[
u_y(x, y) = -2x + 1 - 2y,
\]
\[
u_x(x, y) = -1 + 2y + 2x,
\]
\[
u_y(x, y) = 2x - 2y.
\]
We see that the Cauchy-Riemann equations
\[
u_x = v_y, \quad v_x = -u_y,
\]
hold all \(x \) and \(y \), which means that \(f'(z) \) exists for all values of \(z \), i.e., the function \(f \) is an entire function. For completeness, we can compute the derivative
\[
f'(z) = u_x + iv_x = 2x - 2y + i(2x + 2y - 1) = 2z + 2iz - i.
\]

Alternative solution: Another way to solve this would be to notice that
\[
f(z) = z^2 + iz^2 - iz,
\]
which reveals that \(f \) is entire since \(f \) is a polynomial (in \(z \)).

2. In the preceding question, take \(f(z) = \cos x - i \sinh y \).

Solution: This time the Cauchy-Riemann equations are quicker:
\[
(\cos x)'_x = -\sin x, \quad (\sinh y)'_x = 0,
\]
\[
(\cos x)'_y = 0, \quad (\sinh y)'_y = -\cosh y.
\]
The equation \(-\sin x = -\cosh y\) is never satisfied because \(\sin x \leq 1 \) and \(\cosh y > 1 \) except at \(y = 0 \). So \(f'(z) \) does not exist anywhere.
3. Show that \(f(z) = (\bar{z} + 1)^3 - 3\bar{z} \) is nowhere analytic.

Solution: Expanding the cubic, we get

\[
f(z) = (x + 1 - yi)^3 - 3(x - yi) = (x + 1)^3 - 3(x + 1)y^2 - 3(x + 1)^2yi + y^3i - 3x + 3yi
\]

Let us compute the partial derivatives of \(u \) and \(v \).

\[
\begin{align*}
u_x &= 3(x + 1)^2 - 3y^2 - 3, & v_x &= -6(x + 1)y, \\
u_y &= -6(x + 1)y, & v_y &= 3y^2 + 3 - 3(x + 1)^2.
\end{align*}
\]

We see that they satisfy exactly the opposite of what we want. For instance, we have \(v_x = u_y \), rather than \(v_x = -u_y \). So \(v_x = -u_y \) holds, only when \(v_x = u_y = 0 \). This means that \(6(x + 1)y = 0 \), i.e., \(x = -1 \) or \(y = 0 \). Therefore \(f(z) \) has a chance of being differentiable only at the lines \(x = -1 \) and \(y = 0 \). But then \(f(z) \) cannot be analytic, as any neighbourhood of each point on those lines will contain a point not on any of the lines, at which \(f \) is not differentiable.

4. Find \(\frac{d^5(e^{2t} \sin(2t))}{dt^5} \).

Solution: Since \(\sin(2t) \) is the imaginary part of \(e^{2it} \), \(e^{2t} \sin(2t) \) is the imaginary part of \(e^{2t(1+i)} \). Hence we can differentiate the latter 5 times and then take the imaginary part of the result to find what is asked. We compute

\[
\frac{d^5(e^{2t(1+i)})}{dt^5} = 2^5(1+i)^5 e^{2t(1+i)}.
\]

In order to take the 5-th power of \(1 + i \), we write it in polar form as \(1 + i = \sqrt{2}e^{i\pi/4} \), and compute

\[
(1 + i)^5 = 2^{5/2}e^{5i\pi/4} = -2^{5/2}2^{-1/2}(1 + i),
\]

resulting in

\[
2^5(1 + i)^5 e^{2t(1+i)} = -2^5e^{2t}(1 + i)e^{2t}(\cos 2t + i \sin 2t).
\]

The imaginary part of this is \(-2^7e^{2t}(\cos 2t + \sin 2t) \), i.e.,

\[
\frac{d^5(e^{2t} \sin(2t))}{dt^5} = -2^7e^{2t}(\cos 2t + \sin 2t).
\]

5. What is the value of the integer \(n \) if \(x^n - y^n \) is harmonic?

Solution: Recall that a function \(u(x, y) \) is called harmonic if \(u_{xx} + u_{yy} = 0 \). So \(x^n - y^n \) is harmonic if \(n(n - 1)(x^{n-2} - y^{n-2}) = 0 \), which means that \(n = 0, n = 1, \) or \(n = 2 \).

6. Find the harmonic conjugate of \(e^x \cos y + e^y \cos x + xy \).

Solution: With \(u(x, y) = e^x \cos y + e^y \cos x + xy \), we need to find a function \(v(x, y) \) such that \(f = u + iv \) is analytic, that is, \(u_x = v_y \) and \(v_y = -u_x \). We have

\[
\begin{align*}
u_x &= e^x \cos y - e^y \sin x + y, & v_y &= -e^x \sin y + e^y \cos x + x.
\end{align*}
\]
Integrating u_x with respect to y, we get
\[v(x, y) = e^x \sin y - e^y \sin x + \frac{1}{2} y^2 + A(x), \]
where $A(x)$ is an arbitrary function of x. On the other hand, integrating $-u_y$ with respect to x, we have
\[v(x, y) = e^x \sin y - e^y \sin x + \frac{1}{2} x^2 + B(y), \]
where $B(y)$ is an arbitrary function of y. Combining the two expressions, we conclude that
\[v(x, y) = e^x \sin y - e^y \sin x + \frac{1}{2} x^2 + \frac{1}{2} y^2, \]
satisfies $u_x = v_y$ and $v_y = -u_y$.

7. Compute $\arcsin(1 + i)$.

Solution: Recall the formula
\[\arcsin z = -i \log (zi \pm \sqrt{1 - z^2}). \]

With $z = 1 + i$, we get
\[\sqrt{1 - z^2} = \sqrt{1 - 2i} = \sqrt{5} \left(\cos \frac{\alpha}{2} - i \sin \frac{\alpha}{2} \right), \]
where $\alpha = \arctan 2$, and so
\[w_{1,2} = zi \pm \sqrt{1 - z^2} = -1 + i \pm \sqrt{5} \left(\cos \frac{\alpha}{2} - i \sin \frac{\alpha}{2} \right). \]

Now we recall
\[\log w = \log |w| + i \arg w. \]

Note that $\arg w$ has infinitely many values differing from each other by integer multiples of 2π. Hence each of w_1 and w_2 results in an infinite collection of values for \arcsin. We cannot do much beyond this, except to say that we can compute an approximate value by a calculator.

8. Prove that $\sin(iz) = i \sinh z$ and $\cos(iz) = \cosh z$.

Solution: They follow from the definitions. For instance, the first identity is
\[\sin(iz) = \frac{e^{i\cdot iz} - e^{-i\cdot iz}}{2i} = \frac{e^{-z} - e^z}{2i} = i \frac{e^z - e^{-z}}{2} = i \sinh z. \]

9. Find all solutions of $\sin z - \cos z = 0$.

Solution: The equation says that
\[\frac{e^z - e^{-iz}}{2i} - \frac{e^{iz} + e^{-iz}}{2} = \frac{(1 - i)e^{iz} - (1 + i)e^{-iz}}{2i} = 0. \]

Multiplying it by $2ie^{iz}$, we arrive at
\[(1 - i)e^{2iz} - (1 + i) = 0, \quad \text{or} \quad e^{2iz} = \frac{1 + i}{1 - i} = i. \]

This implies that $2iz = i(\frac{\pi}{2} + 2\pi k)$ for some integer k, i.e.,
\[z = \frac{\pi}{4} + \pi k. \]
10. Compute \(\log e^i \).

Solution: We have

\[
z = e^i = e^{\cos 1 + i \sin 1} = e^{\cos 1}(\cos \sin 1 + i \sin \sin 1),
\]

hence \(|z| = e^{\cos 1}\) and \(\arg z = \sin 1 + 2\pi k\), with integers \(k\). We conclude

\[
\log z = \log |z| + i \arg z = \cos 1 + i(\sin 1 + 2\pi k).
\]

11. Find all solutions of \(e^z = e^{iz} \).

Solution: The exponential function has the period \(2\pi i\), so

\[
z = iz + 2\pi ik\text{ for some integer }k.
\]

In other words,

\[
z = \frac{2\pi ik}{1 - i} = \left(1 + i\right)\pi k = (1 + i)\pi k.
\]

12. Compute \(\pi^i \).

Solution: We compute

\[
\pi^i = e^{i \log \pi} = e^{i(\log \pi + i 2\pi k)} = e^{\pi \log \pi - 2\pi k} = e^{-2\pi k} (\cos \log \pi + i \sin \log \pi).
\]

13. Find all solutions of \(\sin \cos z = 0 \).

Solution: Solving the outer equation gives \(\cos z = \pi k \), for some integer \(k\). Then taking the arccosine of it, we have

\[
z = \arccos(\pi k) = -i \log(\pi k \pm \sqrt{\pi^2 k^2 - 1}).
\]

For \(k \neq 0\), we have \(\pi^2 k^2 > 1\), so

\[
z = -i \log(\pi k \pm \sqrt{\pi^2 k^2 - 1}) = -i \Log(\pi k \pm \sqrt{\pi^2 k^2 - 1}) + 2\pi n,
\]

for some integer \(n\). The case \(k = 0\), on the other hand, leads to

\[
z = -i \log(\pm i) = -i \cdot i(\frac{\pi}{2} + 2\pi n) = \frac{\pi}{2} + 2\pi n,
\]

for some integer \(n\).

14. Evaluate \(\int e^z \, dz \), from \(z = 1\) to \(z = 1 + i\) along the line \(x = 1\).

Solution: Let us parameterize the line by \(z(t) = 1 + it\), with \(0 \leq t \leq 1\). By definition of the complex line integral, we have

\[
\int e^z \, dz = \int_0^1 e^{z(t)} z'(t) \, dt = \int_0^1 e^{1 + it} \, i \, dt = e^{1 + it} \bigg|_0^1 = e(e^i - 1).
\]

15. Evaluate \(\int \frac{dz}{z} \), from \(-i\) to \(i\) along the arc given by \(z(t) = e^{it}\) with \(-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\).

Solution: Again by definition, we have

\[
\int \frac{dz}{z} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{z'(t) \, dt}{z(t)} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{ie^{it} \, dt}{e^{it}} = it \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \pi i.
\]