
SAMPLE PROBLEMS WITH SOLUTIONS

FALL 2012

1. Let f(z) = y−2xy+ i(−x+x2−y2) + z2 where z = x+ iy is a complex variable defined
in the whole complex plane. For what values of z does f ′(z) exist?

Solution: Our plan is to identify the real and imaginary parts of f , and then check if
the Cauchy-Riemann equations hold for them. We have

f(z) = y − 2xy + i(−x+ x2 − y2) + x2 − y2 + 2ixy

= x2 − 2xy + y − y2 + i(−x+ 2xy + x2 − y2),

and so

u(x, y) = x2 − 2xy + y − y2, v(x, y) = −x+ 2xy + x2 − y2.

We compute the partial derivatives of u and v as

ux(x, y) = 2x− 2y, vx(x, y) = −1 + 2y + 2x,

uy(x, y) = −2x+ 1− 2y, vy(x, y) = 2x− 2y.

We see that the Cauchy-Riemann equations

ux = vy, vx = −uy,

hold all x and y, which means that f ′(z) exists for all values of z, i.e., the function f is
an entire function. For completeness, we can compute the derivative

f ′(z) = ux + ivx = 2x− 2y + i(2x+ 2y − 1) = 2z + 2iz − i.

Alternative solution: Another way to solve this would be to notice that

f(z) = z2 + iz2 − iz,

which reveals that f is entire since f is a polynomial (in z).
2. In the preceding question, take f(z) = cosx− i sinh y.

Solution: This time the Cauchy-Riemann equations are quicker:

(cosx)′x = − sinx, (− sinh y)′x = 0,

(cosx)′y = 0, (− sinh y)′y = − cosh y.

The equation − sinx = − cosh y is never satisfied because sinx ≤ 1 and cosh y > 1
except at y = 0. So f ′(z) does not exist anywhere.
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3. Show that f(z) = (z̄ + 1)3 − 3z̄ is nowhere analytic.
Solution: Expanding the cubic, we get

f(z) = (x+ 1− yi)3 − 3(x− yi)
= (x+ 1)3 − 3(x+ 1)y2 − 3(x+ 1)2yi+ y3i− 3x+ 3yi

= (x+ 1)3 − 3(x+ 1)y2 − 3x︸ ︷︷ ︸
u(x,y)

+i (y3 + 3y − 3(x+ 1)2y)︸ ︷︷ ︸
v(x,y)

.

Let us compute the partial derivatives of u and v.

ux = 3(x+ 1)2 − 3y2 − 3, vx = −6(x+ 1)y,

uy = −6(x+ 1)y, vy = 3y2 + 3− 3(x+ 1)2.

We see that they satisfy exactly the opposite of what we want. For instance, we have
vx = uy, rather than vx = −uy. So vx = −uy holds, only when vx = uy = 0. This
means that 6(x + 1)y = 0, i.e, x = −1 or y = 0. Therefore f(z) has a chance of being
differentiable only at the lines x = −1 and y = 0. But then f(z) cannot be analytic, as
any neighbourhood of each point on those lines will contain a point not on any of the
lines, at which f is not differentiable.

4. Find d5(e2t sin(2t))
dt5

.

Solution: Since sin(2t) is the imaginary part of e2it, e2t sin(2t) is the imaginary part

of e2t(1+i). Hence we can differentiate the latter 5 times and then take the imaginary
part of the result to find what is asked. We compute

d5e2t(1+i)

dt5
= 25(1 + i)5e2t(1+i).

In order to take the 5-th power of 1 + i, we write it in polar form as 1 + i =
√

2eiπ/4,
and compute

(1 + i)5 = 25/2e5πi/4 = −25/22−1/2(1 + i),

resulting in

25(1 + i)5e2t(1+i) = −2522(1 + i)e2t(cos 2t+ i sin 2t).

The imaginary part of this is −27e2t(cos 2t+ sin 2t), i.e.,

d5(e2t sin(2t))

dt5
= −27e2t(cos 2t+ sin 2t).

5. What is the value of the integer n if xn − yn is harmonic?
Solution: Recall that a function u(x, y) is called harmonic if uxx+uyy = 0. So xn−yn

is harmonic if n(n− 1)(xn−2 − yn−2) = 0, which means that n = 0, n = 1, or n = 2.
6. Find the harmonic conjugate of ex cos y + ey cosx+ xy.

Solution: With u(x, y) = ex cos y + ey cosx + xy, we need to find a function v(x, y)
such that f = u+ iv is analytic, that is, ux = vy and vy = −uy. We have

ux = ex cos y − ey sinx+ y, uy = −ex sin y + ey cosx+ x.
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Integrating ux with respect to y, we get

v(x, y) = ex sin y − ey sinx+ 1
2y

2 +A(x),

where A(x) is an arbitrary function of x. On the other hand, integrating −uy with
respect to x, we have

v(x, y) = ex sin y − ey sinx+ 1
2x

2 +B(y).

where B(y) is an arbitrary function of y. Combining the two expressions, we conclude
that

v(x, y) = ex sin y − ey sinx+ 1
2x

2 + 1
2y

2,

satisfies ux = vy and vy = −uy.
7. Compute arcsin(1 + i).

Solution: Recall the formula

arcsin z = −i log(zi±
√

1− z2).
With z = 1 + i, we get√

1− z2 =
√

1− 2i =
4
√

5 (cos
α

2
− i sin

α

2
),

where α = arctan 2, and so

w1,2 = zi±
√

1− z2 = −1 + i± 4
√

5 (cos
α

2
− i sin

α

2
).

Now we recall
logw = Log |w|+ i argw.

Note that argw has infinitely many values differing from each other by integer multiples
of 2π. Hence each of w1 and w2 results in an infinite collection of values for arcsin. We
cannot do much beyond this, except to say that we can compute an approximate value
by a calculator.

8. Prove that sin(iz) = i sinh z and cos(iz) = cosh z.
Solution: They follow from the definitions. For instance, the first identity is

sin(iz) =
ei·iz − e−i·iz

2i
=
e−z − ez

2i
= i

ez − e−z

2
= i sinh z.

9. Find all solutions of sin z − cos z = 0.
Solution: The equation says that

eiz − e−iz

2i
− eiz + e−iz

2
=

(1− i)eiz − (1 + i)e−iz

2i
= 0.

Multiplying it by 2ieiz, we arrive at

(1− i)e2iz − (1 + i) = 0, or e2iz =
1 + i

1− i
= i.

This implies that 2iz = i(π2 + 2πk) for some integer k, i.e.,

z =
π

4
+ πk.
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10. Compute log ee
i
.

Solution: We have

z = ee
i

= ecos 1+i sin 1 = ecos 1(cos sin 1 + i sin sin 1),

hence |z| = ecos 1 and arg z = sin 1 + 2πk, with integers k. We conclude

log z = Log |z|+ i arg z = cos 1 + i(sin 1 + 2πk).

11. Find all solutions of ez = eiz.
Solution: The exponential function has the period 2πi, so z = iz + 2πik for some

integer k. In other words,

z =
2πik

1− i
= (1 + i)πik = (−1 + i)πk.

12. Compute πi.
Solution: We compute

πi = ei log π = ei(Log π+i·2πk) = eiLog π−2πk = e−2πk(cos Log π + i sin Log π).

13. Find all solutions of sin cos z = 0.
Solution: Solving the outer equation gives

cos z = πk,

for some integer k. Then taking the arccosine of it, we have

z = arccos(πk) = −i log(πk ±
√
π2k2 − 1).

For k 6= 0, we have π2k2 > 1, so

z = −i log(πk ±
√
π2k2 − 1) = −iLog(πk ±

√
π2k2 − 1) + 2πn,

for some integer n. The case k = 0, on the other hand, leads to

z = −i log(±i) = −i · i(π
2

+ 2πn) =
π

2
+ 2πn,

for some integer n.
14. Evaluate

∫
ezdz, from z = 1 to z = 1 + i along the line x = 1.

Solution: Let us parameterize the line by z(t) = 1 + it, with 0 ≤ t ≤ 1. By definition
of the complex line integral, we have∫

ezdz =

∫ 1

0
ez(t)z′(t)dt =

∫ 1

0
e1+itidt = e1+it

∣∣∣1
0

= e(ei − 1).

15. Evaluate
∫

dz
z , from −i to i along the arc given by z(t) = eit with −π

2 ≤ t ≤
π
2 .

Solution: Again by definition, we have∫
dz

z
=

∫ π
2

−π
2

z′(t)dt

z(t)
=

∫ π
2

−π
2

ieitdt

eit
= it

∣∣∣π2
−π

2

= πi.


