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1. Electrostatics and gravitation

Newton’s law of universal gravitation, first published in his Principia in 1687, asserts that
the force exerted on a point mass Q at x ∈ R3 by the system of finitely many point masses qi
at yi ∈ R3, (i = 1, . . . ,m), is equal to

F =
m∑
i=1

CqiQ

|x− yi|2
x− yi
|x− yi|

, (1)

with a constant C < 0 (like masses attract). Here Q and qi are understood as real numbers

that measure how much mass the corresponding points have, and |a| =
√
a2

1 + a2
2 + a2

3 is the
Euclidean length of the vector a ∈ R3. The same law of interaction between point charges
was discovered experimentally by Charles Augustin de Coulomb and announced in 1785, now
with C > 0 (like charges repel). Note that the numerical value of the constant C depends on
the unit system one is using to measure force, mass (or charge), and distance.

It is convenient to view the force F = F (x) as a vector function of x, that is, a vector field.
This means that we fix the configuration of the point masses {qi}, and think of Q as a test
mass, that can be placed at any point in space to “probe the field.” The vector field

E(x) =

m∑
i=1

Cqi
|x− yi|2

x− yi
|x− yi|

, (2)

does not depend on the test mass Q, and given any test mass Q at x ∈ R3, the force can
be recovered as F = QE(x). Therefore E can be thought of as a preexisting entity that
characterizes the gravitational (or electric) field generated by the point masses {qi}. In fact,
we call E the gravitational field (or the electric field).

In this short note, we give an introduction to multipole expansions, which is a powerful
method to get a handle on the field E, when it is generated by a system of large number of
particles, or by a body with continuous distribution of mass (or charge). The method was
originally developed to calculate the gravitational field of an irregular shaped object, such as
the Earth, and is largely due to the three great mathematicians Joseph-Louis Lagrange, Pierre-
Simon Laplace, and Adrien-Marie Legendre. It was later extended to treat wave propagation
problems in electromagnetism and general relativity.
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For continuous distribution of mass, the sum in (2) must be replaced by an integral, as

E(x) = C

∫
Ω

ρ(y)

|x− y|2
x− y
|x− y|dy, (3)

where ρ is the mass (or charge) density, and Ω ⊂ R3 is the region occupied by the body. By
defining ρ = 0 outside Ω, in (3) we may integrate over R3. Now, the method of multipole
expansions depends on a few crucial observations. Firstly, in 1773, Lagrange showed that the
field E is (minus) the gradient of some scalar function u, called the potential, that is,

there is a scalar function u such that E = −gradu ≡ −
( ∂u
∂x1

,
∂u

∂x2
,
∂u

∂x3

)
. (4)

Secondly, in 1782, Laplace observed that E is divergence-free in empty space, that is,

divE ≡ ∂E1

∂x1
+
∂E2

∂x2
+
∂E3

∂x3
= 0 in free space, (5)

where free space means a place where there is no mass (or charge). From (4) and (5) we see
that the potential satisfies

∆u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

= 0 in free space, (6)

where ∆ is called the Laplace operator. The equation (6) is the Laplace equation, and its
solutions are called harmonic functions. It should however be noted that the same equation
had been considered by Lagrange in 1760 in connection with his study of fluid flow problems.

Laplace’s result (6) was completed by his student Siméon Denis Poisson in 1813, when
Poisson showed that

∆u = −4πCρ in R3, (7)

for ρ vanishing outside some bounded set1. This equation is called the Poisson equation, and
is valid everywhere, as opposed to (6), which is only valid in free space. Note that in terms
of the field E, the Poisson equation (7) is simply divE = 4πCρ.

Finally, around 1785, Legendre and Laplace devised a method to expand u in a series of
the form

u(x) =
∞∑
n=0

un(x), (8)

where un behaves like un(x) ∼ |x|−n for x ∈ R3 far away from the origin. Then by summing
only the first few terms in the right hand side of (8), we can approximate u(x) with high
accuracy, especially for |x| large. This expansion was the first instance of what came to be
known as multipole expansions.

In the next section, we will confirm the existence of a potential (4), divergence-free property
of the field (5), and the Poisson equation (7). Then in the following section, we will derive
the multipole expansion (8) in two dimensions.

2. The Laplace equation

In order to confirm the existence of a potential (4), we simply define

u(x) =

m∑
i=1

Cqi
|x− yi|

, (9)

1In Gaussian type unit systems, one sets up the units so that C = ±1, and hence the Newtonian/Coulomb
formulas (2) and (3) have simple expressions. In other systems such as SI, one has C = ± 1

4π
, meaning that

the Poisson equation (7) has a simple expression.
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for a system of point charges, and

u(x) = C

∫
R3

ρ(y)dy

|x− y| , (10)

for a continuous distribution of charge, and check that E = −gradu indeed gives (2) and (3),
respectively. To this end, we compute

∂

∂x1

1

|x| =
∂

∂x1

(
|x|2
)−1/2

= −1

2

(
|x|2
)−3/2 · 2x1 = − 1

|x|2 ·
x1

|x| , (11)

and so

grad
1

|x| = − 1

|x|2 ·
x

|x| , or grad
1

|x− y| = − 1

|x− y|2 ·
x− y
|x− y| , (12)

for a fixed y ∈ R3. This means that if u is given by (9), then

gradu(x) =

m∑
i=1

grad
Cqi
|x− yi|

= −
m∑
i=1

Cqi
|x− yi|2

· x− yi|x− yi|
= −E(x), (13)

confirming (4). The case (10) can be treated similarly.
Next, we show that E is divergence-free in free space. When E is generated by a single

particle at the origin, we have

∂

∂x1

(
|x|2
)−3/2

x1 = −3

2

(
|x|2
)−5/2 · 2x1 · x1 +

(
|x|2
)−3/2

=
−2x2

1 + x2
2 + x2

3

|x|5 , (14)

and so

div
x

|x|3 =
∂

∂x1

(
|x|2
)−3/2

x1 +
∂

∂x2

(
|x|2
)−3/2

x2 +
∂

∂x3

(
|x|2
)−3/2

x3

=
−2x2

1 + x2
2 + x2

3

|x|5 +
−2x2

2 + x2
1 + x2

3

|x|5 +
−2x2

3 + x2
1 + x2

2

|x|5 = 0,

for x 6= 0. Therefore, for either (2) or (3), we have

divE = 0 in free space. (15)

If we combine this with E = −gradu, we get the Laplace equation

∆u = 0 in free space. (16)

To proceed further, let us recall the divergence theorem, which asserts that∫
U

divV =

∫
∂U
V · n, (17)

where U ⊂ R3 is a bounded domain with smooth boundary, V : U → R3 is a 3-dimensional
vector field, and n is the outward pointing unit normal to the boundary ∂U . This theorem
first appeared in Lagrange’s 1760 work, and was proved in a special case by Gauss in 1813.
The general 3-dimensional case was treated by Mikhail Vasilievich Ostrogradsky in 1826.

∂U

U

n

n

Figure 1. The setting of the divergence theorem.
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If V = gradu then

divV = ∆u, and V · n = n · gradu = ∂nu, (18)

where ∂nu is the normal derivative of u at ∂U , and so the divergence theorem yields∫
U

∆u =

∫
∂U
∂nu (19)

Now consider the potential generated by a point mass q at some point y ∈ U :

u(x) =
Cq

|x− y| . (20)

Let Bε = {x ∈ R3 : |x− y| < ε}, and let us apply (19) to the domain Uε = U \Bε. Since u is
harmonic in Uε, we infer

0 =

∫
Uε

∆u =

∫
∂Uε

∂nu =

∫
∂U
∂nu−

∫
∂Bε

∂u

∂r
, (21)

where r = |x− y| is the radial variable centred at y. We can compute∫
∂Bε

∂u

∂r
=

∫
{r=ε}

∂

∂r

Cq

r
= −

∫
{r=ε}

Cq

r2
= −4πε2Cq

ε2
= −4πCq, (22)

and thus ∫
∂Ω
∂nu = −4πCq. (23)

This is for the potential generated by a charge at y ∈ U . On the other hand, if y 6∈ U , then
∆u = 0 in U , and hence we have ∫

∂U
∂nu =

∫
U

∆u = 0. (24)

Therefore, for the potential generated by a set of point charges (9), we conclude that∫
∂U
∂nu = −4πC

∑
{i:yi∈U}

qi, (25)

where the sum is taken over the indices i such that yi ∈ U , meaning that the sum
∑
{i:yi∈U} qi

is simply the total charge contained in the domain U . Similarly, for the potential generated
by a continuous distribution of charge (10), we get∫

∂U
∂nu = −4πC

∫
U
ρ. (26)

Finally, let Bε = {y ∈ R3 : |y − x| < ε} for ε > 0 small, and note that for any continuous
function f , one has

f(x) = lim
ε→0

1

|Bε|

∫
Bε

f, (27)

where |Bε| is the volume of the ball Bε. By applying this result to ∆u, with u given by (10),
we infer

∆u(x) ≈ 1

|Bε|

∫
Bε

∆u =
1

|Bε|

∫
∂Bε

∂nu = −4πC

|Bε|

∫
Bε

ρ ≈ −4πCρ(x), (28)

where we used the identity (19) in the second step, and (26) in the third step. Upon taking
the limit ε→ 0, we get

∆u(x) = −4πCρ(x), (29)

which is Poisson’s equation.
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3. Multipole expansions

In this section, we want to restrict ourselves to the two dimensional situation, which can
be thought of as a stepping stone to understanding the full three dimensional setting. The
main equations of two dimensional electrostatics and gravitation can be derived by assuming
that the field potential u(x) = u(x1, x2, x3) does not depend on x3. Since ∂2u/∂x2

3 = 0, the
three dimensional Laplacian reduces to the two dimensional Laplacian

∆u =
∂2u

∂x2
+
∂2u

∂y2
, (30)

where we have used (x, y) instead of (x1, x2). Thus in free space, we have

∆u = 0. (31)

The potential generated by a point charge at (0, 0) in 2 dimensions (or equivalently, the
potential of a uniformly charged line coinciding with the z-axis in three dimensions) must

clearly be radial, meaning that it must depend only on r =
√
x2 + y2. We know that the only

radial solutions of ∆u = 0 in 2 dimensions is

u(r, θ) = A+B log r. (32)

Since the constant A has no effect on the field strength E = −gradu, for simplicity, we pick
A = 0. Then the potential generated by a point charge q at the origin is given by

u(r, θ) = −Cq log r = Cq log
1

r
, (33)

where the sign convention for the constant C is chosen so that if Cq > 0, then E = −gradu
points away from the origin. This is the Newton/Coulomb law in 2 dimensions.

r

(a) In 2 dimensions, the potential gener-
ated by a point charge at the origin is un-
bounded both as |x| → ∞, and as x→ 0.

r

(b) In 3 and higher dimensions, the po-
tential generated by a point charge at the
origin is unbounded as x→ 0, but tends
to 0 as |x| → ∞.

Figure 2. The potential generated by a point charge in different dimensions.

Now by invoking the identity (19) on the disk Dε = {(x, y) : x2 + y2 < ε2}, we get∫
Dε

∆u =

∫
∂Dε

∂u

∂r
= Cq

∫
{r=ε}

∂

∂r
log

1

r
= −

∫
{r=ε}

Cq

r
= −2πε

Cq

ε
= −2πCq, (34)

and proceeding as in the 3 dimensional case, we derive the Poisson equation

∆u = −2πCµ (35)

where µ is the charge (or mass) density in 2 dimensions.
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The main purpose of this section is to compute the potential generated by a compact body
located near the origin, in the form of a series. Suppose that µ = 0 outside the disk DR of
radius R centred at the origin. Then ∆u = 0 outside DR, and hence u can be written as

u(r, θ) = a0 log
1

r
+
∞∑
n=1

an cos(nθ) + bn sin(nθ)

rn
(36)

There are no terms proportional to rn in the expansion, because the term log 1
r must dominate

for large r. This expansion is known as the multipole expansion of harmonic potential functions
in 2 dimensions. The question is now how to compute the coefficients a0, a1, . . . and b1, b2, . . .
in terms of the density µ.

To get some initial insight, let us compute the coefficient a0 first. For large r, the expansion
(36) becomes a0 log 1

r , so we expect that a0 must be equal to the total charge of the body.
To confirm this expectation, we start with the Poisson equation (35) and invoke the identity
(19), yielding

− 2πC

∫
R2

µ = −2πC

∫
DR

µ =

∫
DR

∆u =

∫
∂DR

∂u

∂r
. (37)

Then from (36) we compute

∂u

∂r
= −a0

r
−
∞∑
n=1

n
an cos(nθ) + bn sin(nθ)

rn+1
, (38)

and integrate it over ∂DR, to get∫
∂DR

∂u

∂r
=

∫ 2π

0

∂u

∂r
(R, θ)Rdθ = −a0

R
· 2πR = −2πa0. (39)

By comparing this with (37), we conclude

a0 = C

∫
R2

µ (40)

which is the total charge/mass, up to the constant C.
In order to derive formulas for the remaining coefficients, we need some preparations. Let

v be a sufficiently smooth scalar function. Then by applying the divergence theorem to the
vector field V = u grad v, we get Green’s first identity∫

DR

gradu · grad v +

∫
DR

u∆v =

∫
∂DR

u
∂v

∂r
. (41)

Interchanging the roles of u and v in this identity, and subtracting the resulting identity from
(41), we infer Green’s second identity∫

DR

u∆v −
∫
DR

v∆u =

∫
∂DR

u
∂v

∂r
−
∫
∂DR

v
∂u

∂r
. (42)

Note that (19) follows from (41) by putting v ≡ 1. The identities (41) and (42) can be
considered as instances of, and are often called, integration by parts in higher dimensions.

Now the idea is to put a suitably chosen function v with ∆v = 0 into (42). Then the left
hand side becomes essentially an integral of vµ, and the right hand side can be computed
from (36). In other words, we use (42) as an extension of (37). A general harmonic function
in DR can be written as

v(r, θ) = A0 +
∞∑
n=1

rn(An cos(nθ) +Bn sin(nθ)). (43)
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We consider the simple choices v(r, θ) = rn cos(nθ) and v(r, θ) = rn sin(nθ), and compute the
terms in the right hand side of (42), as follows. For v(r, θ) = rn cos(nθ), we have∫

∂DR

u
∂v

∂r
=

∫ 2π

0
u(R, θ)

∂v

∂r
(R, θ)Rdθ

=

∫ 2π

0

(
a0 log

1

R
+

∞∑
n=1

an cos(nθ) + bn sin(nθ)

Rn

)
· nRn−1 cos(nθ) ·Rdθ

= πnan,

and ∫
∂DR

v
∂u

∂r
=

∫ 2π

0
v(R, θ)

∂u

∂r
(R, θ)Rdθ

=

∫ 2π

0
Rn cos(nθ) ·

(
−a0

R
−
∞∑
n=1

n
an cos(nθ) + bn sin(nθ)

Rn+1

)
·Rdθ

= −πnan.

Plugging this into (42), we get

2πnan =

∫
∂DR

u
∂v

∂r
−
∫
∂DR

v
∂u

∂r
= −

∫
DR

v∆u = 2πC

∫
R2

vµ (44)

implying that

an =
C

n

∫
R2

vµ =
C

n

∫
R2

rn cos(nθ)µ (45)

Similarly, for v(r, θ) = rn sin(nθ), we can compute∫
∂DR

u
∂v

∂r
= πnbn, and

∫
∂DR

v
∂u

∂r
= −πnbn, (46)

leading to the formula

bn =
C

n

∫
R2

vµ =
C

n

∫
R2

rn sin(nθ)µ (47)

The formulas (40), (45), and (47) provide a complete prescription to compute the coefficients
of the multipole expansion (36) in terms of the density µ.

Definition 1. The number a0 in the multipole expansion (36) is called the monopole moment.
The vectors (a1, b1) and (a2, b2) are called the dipole moment and the quadrupole moment,
respectively.

Figure 3 illustrates the first 3 terms of the multipole expansion

u(r, θ) = a0 log
1

r︸ ︷︷ ︸
monopole term

+
a1 cos θ + b1 sin θ

r︸ ︷︷ ︸
dipole term

+
a2 cos 2θ + b2 sin 2θ

r2︸ ︷︷ ︸
quadrupole term

+ . . . . (48)

We depicted the dipole and quadrupole potentials with (a1, b1) = (1, 0) and (a2, b2) = (1, 0),
respectively. A dipole (or quadrupole) potential with an arbitrary moment (a1, b1) (or (a2, b2))
is simply a rotation and scaling of the case depicted.

In the following examples, we are going to set C = 1, that is, we choose the normalization
that the potential of a unit charge at the origin is given by log 1

r , cf. (33).
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(a) Monopole potential (b) Dipole potential (c) Quadrupole potential

0

Figure 3. The first 3 terms of the multipole expansion (up to rotation).

Example 1. Suppose that the unit disk D = {(x, y) : x2 + y2 < 1} is uniformly charged with
total charge 1 (Case 1, Figure 4). Let us compute the electrostatic potential generated by the
disk. It is immediate that µ = 1

π and a0 = 1. Furthermore, we have

a1 =

∫ 1

0

∫ 2π

0
r cos θ · 1

π
· rdθdr =

1

π

∫ 1

0
r2dr

∫ 2π

0
cos θdθ = 0, (49)

and

b1 =

∫ 1

0

∫ 2π

0
r sin θ · 1

π
· rdθdr =

1

π

∫ 1

0
r2dr

∫ 2π

0
sin θdθ = 0. (50)

In fact, basically the same computation shows that an = bn = 0 for all n = 1, 2, . . ., and hence

u(r, θ) = log
1

r
. (51)

We conclude that the electric field generated by a uniformly charged disk, measured outside
the disk, is identical to the field generated by a point charge.

+1 +1
2

−1
2

+1
2

+1
2

+1
2

−1
2

Figure 4. Examples of charged bodies.

Example 2. Now suppose that a half of the unit disk D carries a charge of +1
2 , and the

other half carries a charge of −1
2 . More precisely, suppose that the half disk {x > 0} ∩ D is

uniformly charged with charge density + 1
π , and the half disk {x < 0}∩D is uniformly charged

with charge density − 1
π (Case 2, Figure 4). Obviously, we have a0 = 0. Then for a1, we have

a1 =
1

π

∫ 1

0

∫ π/2

−π/2
r cos θ · rdθdr − 1

π

∫ 1

0

∫ 3π/2

π/2
r cos θ · rdθdr

=
1

π

∫ 1

0

(
sin θ

∣∣∣π/2
−π/2

)
r2dr − 1

π

∫ 1

0

(
sin θ

∣∣∣3π/2
π/2

)
r2dr =

4

3π
.
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Furthermore, we get

b1 =
1

π

∫ 1

0

∫ π/2

−π/2
r sin θ · rdθdr − 1

π

∫ 1

0

∫ 3π/2

π/2
r sin θ · rdθdr

=
1

π

∫ 1

0

(
− cos θ

∣∣∣π/2
−π/2

)
r2dr − 1

π

∫ 1

0

(
− cos θ

∣∣∣3π/2
π/2

)
r2dr = 0.

In fact, it can be shown that an = bn = 0 for all n = 2, 3, . . ., and hence

u(r, θ) =
4 cos θ

3πr
. (52)

Example 3. Let the union of the two squares Q = (0, 1)2 and Q̃ = (−1, 0)2 be uniformly
charged with total charge +1 (Case 3, Figure 4). We have µ = 1

2 and a0 = 1. Since r cos θ = x
and r sin θ = y, we have the general formulas

a1 = C

∫
R2

xµ(x, y) dxdy and b1 = C

∫
R2

yµ(x, y) dxdy (53)

Invoking these formulas, we infer

a1 =

∫
Q
x · 1

2
dxdy +

∫
Q̃
x · 1

2
dxdy =

1

2

∫ 1

0
x dx

∫ 1

0
dy +

1

2

∫ 0

−1
x dx

∫ 0

−1
dy

=
1

2

∫ 1

0
x dx+

1

2

∫ 0

−1
x dx =

1

2

∫ 1

−1
x dx = 0,

and similarly,

b1 =

∫
Q
y · 1

2
dxdy +

∫
Q̃
y · 1

2
dxdy =

1

2

∫ 1

0
y dy

∫ 1

0
dx+

1

2

∫ 0

−1
y dy

∫ 0

−1
dx = 0.

As for the quadrupole moment, noting that

r2 cos 2θ = r2(cos2 θ − sin2 θ) = x2 − y2, (54)

and

r2 sin 2θ = 2r2 sin θ cos θ = 2xy, (55)

we derive the general formulas

a2 =
C

2

∫
R2

(x2 − y2)µ(x, y) dxdy and b2 = C

∫
R2

xyµ(x, y) dxdy (56)

With the help of these formulas, we compute

a2 =
1

2

∫
Q

(x2 − y2) · 1

2
dxdy +

∫
Q̃

(x2 − y2) · 1

2
dxdy

=
1

4

∫ 1

0

∫ 1

0
x2 dxdy − 1

4

∫ 1

0

∫ 1

0
y2 dxdy +

1

4

∫ 0

−1

∫ 0

−1
x2 dxdy − 1

4

∫ 0

−1

∫ 0

−1
y2 dxdy = 0,

and

b2 =

∫
Q
xy · 1

2
dxdy +

∫
Q̃
xy · 1

2
dxdy =

1

2

∫ 1

0
x dx

∫ 1

0
y dy +

1

2

∫ 0

−1
x dx

∫ 0

−1
y dy =

1

4
.

Finally, we conclude that the multipole expansion of the potential up to and including the
quadrature term is

u(r, θ) = log
1

r
+

sin 2θ

4r2
+ . . . = log

1

r
+

sin θ cos θ

2r2
+ . . . . (57)
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Example 4. Consider the situation where Q = (0, 1)2 is uniformly charged with total charge

+1
2 , and Q̃ = (−1, 0)2 is uniformly charged with total charge −1

2 (Case 4, Figure 4). We have

µ = 1
2 in Q, µ = −1

2 in Q̃, and a0 = 0. To compute the dipole moment, we use the formulas
(53), and get

a1 =

∫
Q
x · 1

2
dxdy +

∫
Q̃
x ·
(
− 1

2

)
dxdy =

1

2

∫ 1

0
x dx

∫ 1

0
dy − 1

2

∫ 0

−1
x dx

∫ 0

−1
dy

=
1

2

∫ 1

0
x dx− 1

2

∫ 0

−1
x dx =

1

2
,

and similarly,

b1 =

∫
Q
y · 1

2
dxdy +

∫
Q̃
y ·
(
− 1

2

)
dxdy =

1

2

∫ 1

0
y dy

∫ 1

0
dx− 1

2

∫ 0

−1
y dy

∫ 0

−1
dx =

1

2
.

As for the quadrupole moment, the formulas (56) yield

a2 =
1

2

∫
Q

(x2 − y2) · 1

2
dxdy +

1

2

∫
Q̃

(x2 − y2) ·
(
− 1

2

)
dxdy = 0,

and

b2 =

∫
Q
xy · 1

2
dxdy +

∫
Q̃
xy ·

(
− 1

2

)
dxdy =

1

2

∫ 1

0
x dx

∫ 1

0
y dy − 1

2

∫ 0

−1
x dx

∫ 0

−1
y dy = 0.

Therefore, the potential has the expansion

u(r, θ) =
cos θ + sin θ

2r
+O

( 1

r3

)
, (58)

where the error term O(r−3) is to indicate that there is no quadrupole term in the expansion.
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