
SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 6

Problems 4.1:6

Statement. Assuming FS f(x) = f(x) = x2 for −L ≤ x ≤ L, obtain the results
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Solution. For convenience, let us take L = π. Since the function f(x) = x2 is even in [−π, π],
the Fourier series of f involve only cosines. It is given by

FS f(x) =
a0
2

+
∞∑
n=1

an cosnx, with an =
2

π

∫ π

0
f(x) cosnx dx.

For n = 0, we have
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π

∫ π

0
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3
.

Now assuming n > 0, let us compute the integral∫ π

0
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which implies an = 4(−1)n
n2 . We conclude that
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Putting x = 0, we get
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hence (1). On the other hand, for x = π we get
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3
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giving (2). The other two identities can be derived by taking the sum and the difference of
(1) and (2).
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2 SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 6

Problem 4.2:6

Statement. Find a sequence of functions f1, f2, . . . defined on [−L,L], such that for each x
in [−L,L], lim

n→∞
fn(x) = 0 and yet

lim
n→∞

∫ L

−L
fn(x)dx 6=

∫ L

−L

(
lim
n→∞

fn(x)
)

dx.

Solution. Define the function g(x) for −∞ < x <∞ by

g(x) =


x, if 0 ≤ x ≤ 1,

2− x, if 1 ≤ x ≤ 2,

0, otherwise.

Note that the integral of g is 1, and g vanishes outside the interval (0, 2). Now define

fn(x) = ng(nx), for n = 1, 2, . . . .

We have ∫ L

−L
fn(x) dx =

∫ L

−L
ng(nx) dx =

∫ nL

−nL
g(y) dy = 1,

for all large n (specifically, if nL ≥ 2). Also, fn(x) = 0 if x ≤ 0 or x ≥ 2
n . Hence

limn→∞ fn(x) = 0 for all x ∈ [−L,L]. To see clearly the convergence fn(x) → 0 for x > 0,
observe that given any x∗ > 0, fn(x∗) = 0 if n ≥ 2

x∗ . Note also that we could have started
with any g with nonzero integral satisfying g(0) = 0 and g(x)→ 0 as x→ ±∞.

Problem 4.2:15

Statement. It can be shown that
∞∑
n=1

sinnx√
n

converges for all x and that it is an absoletely integrable function of x on the interval
[−π, π]. Use Bessel’s inequality to show that there is no function f(x) defined on [−π, π]
with

∫ π
−π f(x)2dx <∞, such that

FS f(x) =

∞∑
n=1

sinnx√
n
.

Solution. In this setting, if

f(x) =

∞∑
n=1

bn sinnx,

then Bessel’s inequality holds:

N∑
n=1

b2n ≤
1

π

∫ π

−π
f(x)2dx,

for any N . Since bn = 1√
n

, the sum on left hand side diverges to ∞ as N →∞, which shows

that the integral on the right hand side cannot be finite.
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Problem 4.3:9

Statement. (a) Find a formal solution of the problem
ut = kuxx, 0 ≤ x ≤ 1, t ≥ 0,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = f(x),

where

f(x) =

{
x if 0 ≤ x ≤ 1

2 ,

1− x if 1
2 ≤ x ≤ 1.

(b) If ut(x, t) is formally computed by differentiating each term of the formal solution with
respect to t, then show that ut(

1
2 , 0) = −∞ results. Provide a physical explanation of this

observation by considering the flux of heat through the ends of a small interval centred at
x = 1

2 .

Solution. (a) The formal solution is given by

u(x, t) =
∞∑
n=1

bne
−nπ2kt sin(nπx), with bn = 2

∫ 1

0
f(x) sin(nπx) dx.

Note that sin(nπ(1 − x)) = sin(nπ − nπx) = sin(nπx) when n is odd, and sin(nπ − nπx) =
− sin(nπx) when n is even. Using this symmetry, and taking into account that f(1−x) = f(x),
we infer

bn = 2

∫ 1
2

0
f(x) sin(nπx) dx+ 2(−1)n+1

∫ 1
2

0
f(x) sin(nπx) dx.

So bn = 0 for even n, and

bn = 4

∫ 1
2

0
f(x) sin(nπx) dx = − 4

nπ
cos(nπx)

∣∣∣∣ 12
0

+
4

nπ

∫ 1
2

0
cos(nπx) dx

=
4

nπ
+ (−1)m

4

n2π2
,

for odd n, with n = 2m+ 1. Putting everything together, we conclude

u(x, t) =
∞∑
m=0

(
4

nπ
+ (−1)m

4

n2π2

)
e−nπ

2kt sin(nπx),

where n depends on m as n = 2m+ 1.
(b) Formally, we compute

ut(x, t) = −
∞∑
m=0

(
4πk + (−1)m

4k

n

)
e−nπ

2kt sin(nπx),

and so

ut(
1
2 , 0) = −4k

∞∑
m=0

(
π +

(−1)m

2m+ 1

)
sin

(2m+ 1)π

2

= −4k

∞∑
m=0

(
(−1)mπ +

1

2m+ 1

)
= −∞,

since k > 0 and
∑∞

m=0
1

2m+1 = ∞. This result suggests that the temperature at the point

x = 1
2 drops infinitely fast for a very short (in fact infinitesimal) time near t = 0.
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As suggested in the statement, we can also formally compute the flux as∫ 1
2
+ε

1
2
−ε

ut(x, 0) dx = k

∫ 1
2
+ε

1
2
−ε

uxx(x, 0) dx = kux(x, 0)
∣∣∣ 12+ε
1
2
−ε

= −2k,

where ε > 0 is small. We see that no matter how small the interval [12−ε,
1
2 +ε] is, the integral

of ut over it is a fixed negative number. Therefore, the function ut must become negative
infinity at x = 1

2 .

Problem 4.3:12

Statement. Find a formal solution of the problem
ut = kuxx, 0 ≤ x ≤ 10, t ≥ 0,

ux(0, t) = 2, ux(10, t) = 3,

u(x, 0) = 0.

Solution. First of all, we need to shift the unknown function so that the boundary conditions
are homogeneous. Looking for a polynomial p(x) = Ax2 + Bx satisfying p′(0) = 2 and
p′(10) = 3, we find A = 1

20 and B = 2. Now define the new unknown v = u − p, so that
u = p+ v. Then since ut = vt and uxx = vxx + 2A, we see that v must satisfy

vt = kvxx + 2kA, 0 ≤ x ≤ 10, t ≥ 0,

vx(0, t) = 0, vx(10, t) = 0,

v(x, 0) = −p(x) = −Ax2 −Bx.

In order to use separation of variables, we assume

v(x, t) =
∞∑
n=0

an(t) cos(
nπx

10
),

and formally substitute it into vt = kvxx + 2kA, to get

a′0(t) = 2kA,

and

a′n(t) = −n
2π2k

100
an(t), n > 0.

Note that the cosine series of 2kA involves only the constant term, so it does not affect at
all the equations for n > 0, which remain the same as the equation for the homogeneous case
vt = kvxx. The equations are easily solved as

a0(t) = a0(0) + 2kAt, and an(t) = an(0) exp(−n
2π2k

100
t), n > 0.

Obviously, an(0) for n ≥ 0 are the cosine series coefficients of the initial datum v(x, 0) = −p(x),
which are given by

a0(0) = − 1

10

∫ 10

0
p(x) dx, and an(0) = −1

5

∫ 10

0
p(x) cos(

nπx

10
) dx, n > 0.

Let us do the computation. We have∫ 10

0
p(x) dx =

(
Ax3

3
+
Bx2

2

)∣∣∣∣10
0

=
50

3
+ 100,
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and ∫ 10

0
x cos(

nπx

10
) dx =

10

nπ
x sin(

nπx

10
)

∣∣∣∣10
0

− 10

nπ

∫ 10

0
sin(

nπx

10
) dx

=
100

n2π2
cos(

nπx

10
)

∣∣∣∣10
0

= ((−1)n − 1)
100

n2π2
,

as well as ∫ 10

0
x2 cos(

nπx

10
) dx =

10

nπ
x2 sin(

nπx

10
)

∣∣∣∣10
0

− 20

nπ

∫ 10

0
x sin(

nπx

10
) dx

=
200

n2π2
x cos(

nπx

10
)

∣∣∣∣10
0

− 200

n2π2

∫ 10

0
cos(

nπx

10
) dx

= (−1)n
2000

n2π2
,

leading to

a0(0) =
35

3
, an(0) = −(−1)n

400

n2π2
A+ (1− (−1)n)

20

n2π2
B =

40 + 60(−1)n+1

n2π2
.

Therefore, we conclude

v(x, t) =
35

3
+

k

10
t+

∞∑
n=1

40 + 60(−1)n+1

n2π2
exp(−n

2π2k

100
t) cos(

nπx

10
),

and so

u(x, t) =
35

3
+ 2x+

1

20
x2 +

k

10
t+

∞∑
n=1

40 + 60(−1)n+1

n2π2
exp(−n

2π2k

100
t) cos(

nπx

10
).

Problem 5.1:1

Statement. Solve the problem
utt = a2uxx, 0 ≤ x ≤ L, −∞ < t <∞,
u(0, t) = u(L, t) = 0,

u(x, 0) = f(x), ut(x, 0) = g(x),

in the following cases

(a) f(x) = 3 sin(πxL )− sin(4πxL ), g(x) = 1
2 sin(2πxL ),

(b) f(x) = sin3(πxL ), g(x) = 0,

(c) f(x) = 0, g(x) = sin(πxL ) cos2(πxL ),

(d) f(x) = sin3(πxL ), g(x) = sin(πxL ) cos2(πxL ).

Solution. If the initial data satisfy

f(x) =
N∑
n=1

αn sin(
nπx

L
), g(x) =

N∑
n=1

βn sin(
nπx

L
),

then the solution is given by

u(x, t) =

N∑
n=1

(
αn cos(

nπat

L
) + βn

L

nπa
sin(

nπat

L
)

)
sin(

nπx

L
).

Applying this formula, we get the following.

(a) u(x, t) = 3 cos(πatL ) sin(πxL )− cos(4πatL ) sin(4πxL ) + L
4πa sin(2πatL ) sin(2πxL ).
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(b) From the triple angle formula sin 3θ = 3 sin θ− 4 sin3 θ, we have sin3 θ = 3
4 sin θ− 1

4 sin 3θ,

hence u(x, t) = 3
4 cos(πatL ) sin(πxL )− 1

4 cos(3πatL ) sin(3πxL ).

(c) Again using the triple angle formula g(x) = sin(πxL ) − sin3(πxL ) = 1
4 sin(πxL ) + 1

4 sin(3πxL ),

which leads to u(x, t) = L
4πa sin(πatL ) sin(πxL ) + L

12πa sin(3πatL ) sin(3πxL ).
(d) By combining (b) and (c) above, we infer

u(x, t) =
(
3
4 cos(πatL ) + L

4πa sin(πatL )
)

sin(πxL ) +
(
−1

4 cos(3πatL ) + L
12πa sin(3πatL )

)
sin(3πxL ).


