SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 6

PROBLEMS 4.1:6
Statement. Assuming FS f(x) = f(z) = 2% for —L < x < L, obtain the results

11 1 w2
l-—=+—=—-——=+...= — 1
22 * 32 42 * 12’ (1)
and )
1 1 1 s
1+ —=+—=+-—5+...= —. 2
+ 22 + 32 + 42 + 6 ( )
From these results, obtain
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Solution. For convenience, let us take L = 7. Since the function f(z) = 22 is even in [—7, 7],

the Fourier series of f involve only cosines. It is given by
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For n = 0, we have
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Now assuming n > 0, let us compute the integral
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which implies a,, = 4(;21) . We conclude that
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Putting x = 0, we get
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hence (1). On the other hand, for = ™ we get
2
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giving (2). The other two identities can be derived by taking the sum and the difference of

(1) and (2).
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PROBLEM 4.2:6

Statement. Find a sequence of functions fi, fa,... defined on [—L, L], such that for each z
n [—L,L], lim f,(x) =0 and yet
n—ro0

n—oo

lim ’ fn x)dx # /_LL (T}E&f”(aj)) dz

Solution. Define the function g(x) for —oco < x < oo by

x, if 0<z<1,
glx)=¢2—x, if 1<x<2,
0, otherwise.

Note that the integral of g is 1, and g vanishes outside the interval (0,2). Now define
fn(x) = ng(nz), for n=1,2,....

/LL Jn(z)de = /LL ng(nx)dz = /T;LL g(y)dy =1,

for all large n (specifically, if nL > 2). Also, f,(z) = 0if x < 0 or = > % Hence
lim,, 00 fn(z) = 0 for all z € [-L, L]. To see clearly the convergence f,(x) — 0 for x > 0,
observe that given any z* > 0, f,(z*) = 0if n > g% Note also that we could have started
with any ¢ with nonzero integral satisfying ¢(0) = 0 and g(z) — 0 as x — £oc.

We have

PROBLEM 4.2:15

Statement. It can be shown that

Z sinnx

converges for all x and that it is an absoletely integrable function of z on the interval
[—7,7]. Use Bessel’s inequality to show that there is no function f(z) defined on [—, 7]
with [7_ f(z)?dz < oo, such that

st i sin nx

Solution. In this setting, if

o0
x) = E by, sin nx,
n=1

then Bessel’s inequality holds:

N i

1
Sovi<= [ fla)de,
™ —T

n=1

for any N. Since b, = ﬁ, the sum on left hand side diverges to oo as N — oo, which shows
that the integral on the right hand side cannot be finite.
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PROBLEM 4.3:9
Statement. (a) Find a formal solution of the problem

U = kg, 0<x<1,¢t>0,
u(0,t) =0, wu(l,t)=0,
u(z,0) = f(z),

f(a:):{x ingmS%,

1—=x if%gxgl.

where

(b) If u¢(x,t) is formally computed by differentiating each term of the formal solution with
respect to t, then show that ut(%, 0) = —oo results. Provide a physical explanation of this
observation by considering the flux of heat through the ends of a small interval centred at

—1
x=3.

Solution. (a) The formal solution is given by
oo 9 1
u(z,t) = Z bpe "™ M sin(nrx), with b, = 2/ f(z)sin(nmz) dz.
n=1 0
Note that sin(nm(1 — x)) = sin(nm — nwz) = sin(nwz) when n is odd, and sin(nm — nrx) =

—sin(nmz) when n is even. Using this symmetry, and taking into account that f(1—z) = f(x),
we infer

b, = 2/02 f(z)sin(nmz) dz + 2(—1)" /02 f(z) sin(nmz) dz.

So b, = 0 for even n, and

1 1 1
1 4 1oy
by, = 4/2 f(z)sin(nrz)de = — — cos(nmx)| + — ’ cos(nmz) dx
0 nm 0 nm Jo
4 4
T N
nm +(=1) n2n?’

for odd n, with n = 2m + 1. Putting everything together, we conclude

u(z,t) = i (4 + (D)™ 1 >em2kt sin(nmz),

nmw n2m2

m=0

where n depends on m as n = 2m + 1.
(b) Formally, we compute

- 4k 2
ug(x,t) = — (47rk + (—1)m> e " M sin(nm),
m=0 "
and so
oo
) D™ o @Cm4Dr
ut(g,O)——4kZ <7r+2m+1>sm 5
m=0
- 1
= —4k —1)™ =—
Z<( ) W+2m+1> >
m=0
since k > 0 and ) >, Wlﬂ = o0o. This result suggests that the temperature at the point

T = % drops infinitely fast for a very short (in fact infinitesimal) time near t = 0.
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As suggested in the statement, we can also formally compute the flux as

%4—8 %—i—s %+E
/ w(z,0) dz = k/ U (,0) d = kg (2, 0)|° = —2k,
1

_ 1 5—€
2~ ¢ 2~ ¢ 2

where € > 0 is small. We see that no matter how small the interval [§ —¢, %—i—e] is, the integral
of uy over it is a fixed negative number. Therefore, the function u; must become negative

infinity at x = %

PROBLEM 4.3:12

Statement. Find a formal solution of the problem

U = ktlgr, 0<x<10,t>0,
ugy(0,t) =2, wu,(10,t) =3,
u(z,0) = 0.

Solution. First of all, we need to shift the unknown function so that the boundary conditions

are homogeneous. Looking for a polynomial p(x) = Az? + Bz satisfying p/(0) = 2 and

P/ (10) = 3, we find A = % and B = 2. Now define the new unknown v = u — p, so that

u = p + v. Then since u; = vy and Uy, = vV + 24, we see that v must satisfy
v = kvg, +2kA, 0<x<10,t>0,
v.(0,t) =0, v,(10,t) =0,
v(x,0) = —p(z) = —Ax? — Bx.

In order to use separation of variables, we assume

(o]
nmx
v(z,t) = Z an(t) COS(TO ),
n=0
and formally substitute it into vy = kv, + 2kA, to get
ay(t) = 2kA,
and
n’n’k
a,(t) = — 100 an(t), n > 0.

Note that the cosine series of 2kA involves only the constant term, so it does not affect at
all the equations for n > 0, which remain the same as the equation for the homogeneous case
v = kvgz. The equations are easily solved as

n’n2k
ap(t) = ao(0) + 2k At, and an(t) = a,(0) exp(— 100 t), n>0.

Obviously, ay,(0) for n > 0 are the cosine series coefficients of the initial datum v(z,0) = —p(z),
which are given by

1 10 1 10

a(0) = —— [ pl@)dz, and  a,(0) = —/ p(z) cos(E) da, n > 0.

10 J, 5 /o 10

Let us do the computation. We have
10 Az® B\ [ 50
| pwras = (G4 55)| =G
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and
10 10 10
nmwT 10 nmT 10 nmT
de = — —_— in(—-—)d
/0 zeos(g) T )0 nTr/O n(p)de
100 nrx " 100
= o) = (0 =05,
as well as
10 10
10 20
/ ? cos(@)dx = —z° sin(w) — xsm(w) dx
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200 nrz [*° 200 [10 nmT
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2000
= (_1)nn27T2?
leading to
35 400 20 40 4 60(—1)"F!
ao(0) = 3 an(0) = —(—1)nmf4+ (1- (—1)n)n27r23 = ) :
Therefore, we conclude
35k >, 40 4 60(—1)"H! n?m2k nmwx
=" —t - t) cos(——-
olet) =3+ 15 +; e Pt eos(5p0),
and so
35 k 2. 40 4 60(—1)"H! n?r2k nmwx
t — 4+ 2x4+ — —1 — t —).
u(w,t) =3+ 2wt 20”3 LT i P(=gp 1 eos(5g7)

n=1
PRrROBLEM 5.1:1
Statement. Solve the problem

utt:a2um, 0<x< L, —0o<t <o,
u(0,t) = u(L,t) =0,
U(Z,O) = f(x)’ ut(xﬂ()) = g(x),

in the following cases

(a) f(z )—3sin(L) sin(472), g(x) = g sin(#72),

(b) f(x) =sin®(%E), g(z) = 0,

(c) fl= ;—0 g(x )—Sln( ) cos (§),

(d) f(x)=sin ( L), g(x) —sm(f 0082(%).

Solution. If the initial data satisfy

N N
. nNTx ., nnx
= nz_:lan Sln(T)a g(x) = nz_:lﬁn Sln(T%

then the solution is given by
N
nmat L nwat nmwx
t) = - — gin(——) ) sin(——).
u(z,t) ; <an cos( T )+ ﬂnmra sin( T )) sin( 7 )
Applying this formula, we get the following.

(a) u(x,t) = SCOS(’Tgt) sin(%) — cos(4mt) sm( L)+ m sm(Q’TL“t) 51n(2zx).
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(b) From the triple angle formula sin 30 = 3sin § — 4sin®#, we have sin 4 = % sinf — % sin 36,
hence u(z,t) = i Cos(ﬁgt) sin(Z2) — %COS(&Z‘”) Sm(gzm).

(c) Again using the triple angle formula g(x) = sm( ) sind(52) = 1 sm(%) n %sin(‘%Tx),
which leads to u(z, 1) = ¢, sin(5) sin(F) + phg sin(¥52) sin(2).

(d) By combining (b) and ( ) above, we 1nfer

u(z,t) = (i cos(ZT2) + m sin(T2)) sin(Z%) + (—% cos(37zat) + 12Lm sin(gzat)) sin(%Tx).




