
SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 5

Problems 3.1:6bd

Statement. Solve the problem

ut = uxx, (t ≥ 0),

with the initial condition u(x, 0) = f(x), where the functions u(x, t) and f(x) are assumed to
be 2π-periodic in the x variable. The function f is given in each case by

(b) f(x) = 1
2 + cos(2x)− 6 sin(2x),

(d) f(x) = 6 sin(x)− 7 cos(3x)− 7 sin(3x).

Solution. We know that the solution of the above problem with the initial condition

f(x) = A0 +
N∑
n=1

(an cos(nx) + bn sin(nx)),

is given by

u(x, t) = A0 +
N∑
n=1

e−n
2t(an cos(nx) + bn sin(nx)).

A direct application of this formula gives

(b) u(x, t) = 1
2 + e−4t cos(2x)− 6e−4t sin(2x),

(d) u(x, t) = 6e−t sin(x)− 7e−9t cos(3x)− 7e−9t sin(3x).

Problem 3.1:8

Statement.

(a) Consider the problem

ut = kuxx, (x ≥ 0, t ≥ 0),

u(0, t) = cos(ωt), (t ≥ 0).
(1)

This is a heat conduction problem for a semi-infinite rod (x ≥ 0) whose end (at x = 0)
is subjected to a periodic temperature variation u(0, t) = cos(ωt). Use the particular
solutions

u(x, t) = Aeλx cos(λx+ 2kλ2t) +Beλx sin(λx+ 2kλ2t), (2)

to find a solution of this problem which has both of the additional properties:
(P1) u(x, t)→ 0 as x→∞,
(P2) u(x, t+ 2π

ω ) = u(x, t).
(b) Show that the solution of (1) is not unique, if either (P1) or (P2) is omitted.
(c) Assuming that ω = π

2 and k = π
4 , roughly sketch the graph of the temperature distribution

in the xu-plane when t = 0, 1, 2, 3, 4, paying attention to where u(x, t) = 0.
(d) Show that at any fixed time t, the distance between consecutive local maxima, say x1

and x2, of u(x, t) is 2π
√

2k
ω , and show that the ratio u(x2, t)/u(x1, t) is e−2π ≈ 0.00187,

regardless of the positive values of k and ω.
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Solution. (a) In view of (2), the boundary condition u(0, t) = cos(ωt) gives

u(0, t) = A cos(2kλ2t) +B sin(2kλ2t) = cos(ωt), t ≥ 0,

implying that A = 1, B = 0, and λ = ±
√

ω
2k , i.e., we have the solution

u(x, t) = exp(±
√

ω
2kx) cos(±

√
ω
2kx+ ωt). (3)

In order to satisfy (P1) we need to choose the minus sign in ±
√

ω
2k , so we finally have

u(x, t) = exp(−
√

ω
2kx) cos(−

√
ω
2kx+ ωt). (4)

It is clear that this solution satisfies (P2).
(b) If (P1) is omitted, we can choose either plus or minus sign in (3), which means that

the solution is not unique. On the other hand, if (P2) is dropped, we can add any v(x, t)
satisfying

vt = kvxx, (x ≥ 0, t ≥ 0),

v(0, t) = 0, (t ≥ 0),

to u(x, t). For example, we can take

v(x, t) =
1√
t+ 1

(
exp

(
− (x− 1)2

4k(t+ 1)

)
− exp

(
− (x+ 1)2

4k(t+ 1)

))
.

(c) The time snapshots are depicted in Figure 1. To give a better idea of how the solution
looks like, a spacetime graph of the solution is shown in Figure 2.
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Figure 1. Time snapshots of the solution for 3.1:8c. Legend: t = 0 blue,
t = 1 red, t = 2 yellow, t = 3 green, t = 4 blue again.

(d) The x-derivative of (4) is

ux(x, t) = −
√

ω
2k exp(−

√
ω
2kx)

(
cos(−

√
ω
2kx+ ωt)− sin(−

√
ω
2kx+ ωt)

)
= −

√
ω
k exp(−

√
ω
2kx) cos(−

√
ω
2kx+ ωt+ π

4 ).

Since exp(−
√

ω
2kx) 6= for all x, the zeroes of ux(x, t) coincide with the zeroes of cos(−

√
ω
2kx+

ωt+ π
4 ). The latter function is periodic in x with period 2π

√
2k
ω . This implies that the distance
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Figure 2. Spacetime graph of the solution for 3.1:8c. The t-axis is the one
from left to right, the x-axis is from top to bottom, and the u-axis is directed
towards the reader.

between consecutive local maxima is 2π
√

2k
ω (there are two zeroes of ux in one period, but

one of the zeroes corresponds to a local minumum). As for the ratio of the values, we have

u(x2, t)

u(x1, t)
=

exp(−
√

ω
2kx2) cos(−

√
ω
2kx2 + ωt+ π

4 )

exp(−
√

ω
2kx1) cos(−

√
ω
2kx1 + ωt+ π

4 )
= exp(−

√
ω
2k · 2π

√
2k
ω ) = e−2π,

where we have taken into account the periodicity of cosine and the fact that x2−x1 = 2π
√

2k
ω .

Problem 3.2:1

Statement.

(a) Let v(x, t) be any C2 solution of vt = kvxx (0 ≤ x ≤ L, t ≥ 0), which satisfies the
boundary conditions v(0, t) = 0 and v(L, t) = 0 (without initial condition). Show that for
any t1, t2, with t2 ≥ t1 ≥ 0,∫ L

0
[v(x, t2)]

2dx ≤
∫ L

0
[v(x, t1)]

2dx. (5)

(b) Explain why the conclusion (5) still holds when the boundary conditions are replaced by
any of the following pairs of boundary conditions:

(i) vx(0, t) = vx(L, t) = 0,
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(ii) vx(0, t) = v(L, t) = 0,
(iii) vx(0, t) = h · v(0, t) and v(L, t) = 0, where h > 0.

Solution. Let us define the function

E(t) =

∫ L

0
[v(x, t)]2dx,

which can be called energy. Then (5) can be rephrased as

E(t2) ≤ E(t1), for t2 ≥ t1 ≥ 0.

In other words, we have to show that E is a nondecreasing function of t. Let us calculate the
time derivative of E as

E′(t) =

∫ L

0
2v(x, t)vt(x, t)dx =

∫ L

0
2v(x, t)kvxx(x, t)dx

= 2kv(L, t)vx(L, t)− 2kv(0, t)vx(0, t)− 2k

∫ L

0
|vx(x, t)|2dx

≤ 2kv(L, t)vx(L, t)− 2kv(0, t)vx(0, t).

(6)

We will show below that E′(t) ≤ 0 in various cases, which will then imply that E is nonde-
creasing. Note that each case requires a slightly different reasoning.

(a) We have

E′(t) ≤ 2k v(L, t)︸ ︷︷ ︸
=0

vx(L, t)− 2k v(0, t)︸ ︷︷ ︸
=0

vx(0, t) = 0.

(b)(i) Similarly, we have

E′(t) ≤ 2kv(L, t) vx(L, t)︸ ︷︷ ︸
=0

−2kv(0, t) vx(0, t)︸ ︷︷ ︸
=0

= 0.

(b)(ii) We have

E′(t) ≤ 2k v(L, t)︸ ︷︷ ︸
=0

vx(L, t)− 2kv(0, t) vx(0, t)︸ ︷︷ ︸
=0

= 0.

(b)(iii) We have

E′(t) ≤ 2k v(L, t)︸ ︷︷ ︸
=0

vx(L, t)− 2kv(0, t) vx(0, t)︸ ︷︷ ︸
=hv(0,t)

= −2kh|v(0, t)|2 ≤ 0.

Problem 3.2:2

Statement. State and prove a uniqueness theorem for the problem

ut = uxx,

with the boundary conditions ux(0, t) = a(t) and ux(L, t) = b(t), and the initial condition
u(x, 0) = f(x).
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Solution. We will prove that any two C2 solutions u1 and u2 must be equal to each other.
Supposing that u1 and u2 are two C2 solutions of our problem, let us define v = u1 − u2.

Then by subtracting the equations satisfied by u2 from the corresponding ones for u1, we see
that v satisfies vt = vxx with the boundary conditions vx(0, t) = vx(L, t) = 0, and the initial
condition v(x, 0) = 0. We want to show that v is zero everywhere. From Part (b)(i) of the
previous problem, we have E(t) ≤ E(0) for all t ≥ 0, that is

E(t) =

∫ L

0
[v(x, t)]2dx ≤ E(0) =

∫ L

0
[v(x, 0)]2dx = 0.

Since v(x, t) is a continuous function of x, this implies that v(x, t) = 0 for all 0 ≤ x ≤ L, and
as t ≥ 0 was arbitrary, we conclude that v = 0 everywhere.

Problem 3.2:3

Statement. Use maximum/minimum principles to deduce that the solution u of the problem

ut = kuxx, (0 ≤ x ≤ π, t ≥ 0),

u(0, t) = u(π, t) = 0, (t ≥ 0),

u(x, 0) = sinx+ 1
2 sin 2x, (0 ≤ x ≤ π),

satisfies 0 ≤ u(x, t) ≤ 3
4

√
3 for all 0 ≤ x ≤ π and t ≥ 0.

Solution. We will show that 0 ≤ sinx+ 1
2 sin 2x ≤ 3

4

√
3 for all 0 ≤ x ≤ π, which would then

imply by the maximum and minimum principles the desired bounds for the solution u. First
of all, the representation

f(x) = sinx+ 1
2 sin 2x = sinx+ sinx cosx = (1 + cosx) sinx,

reveals that f(x) ≥ 0 for 0 ≤ x ≤ π. Let us find the maximum of f(x). We calculate

f ′(x) = cosx+ cos 2x = 2 cos2 x+ cosx− 1,

whose zeros are given by cosx = −1±3
4 . This implies x = 2π

3 and x = π. The point x = π is
clearly not a maximum because f(π) = 0. The other candidate gives

f(2π3 ) = (1 + cos 2π
3 ) sin 2π

3 = 3
2 ·
√
3
2 .

It is easy to see from the behaviour of the function f ′(x) or from an inspection of f ′′(x) that
x = 2π

3 is the only maximum point in the interval 0 ≤ x ≤ π.


