
SOLUTIONS TO PROBLEMS FROM ASSIGNMENT 3

Problems 2.2:1d and 2.2:2d

Statement. Obtain the general solution of yux − 4xuy = 2xy for all (x, y), as well as its
particular solution satisfying the side condition u(x, 0) = x4.

Solution. The characteristic equation is given by

dy

dx
= −4x

y
.

As this equation is separable, we can integrate it to get

y2 + 4x2 = r,

which describes an ellipse for each value of the constant r ≥ 0. Differentiation of the solution
u along one of those characteristic curves gives

d

dx
u(x, y(x)) = ux + uyyx = ux −

4x

y
uy =

yux − 4xuy
y

= 2x,

and upon integration we have

u(x, y(x)) = x2 + f(r),

where f(r) is an arbitrary C1 function of r ≥ 0. Note here that the function y(x) depends
implicitly on the parameter r, which parameterizes the space of all characteristic curves. Now,
given an arbitrary point (x, y) on the plane R2, clearly it lies on the characteristic curve with
the parameter r = y2 + 4x2. Hence we can write the general solution as

u(x, y) = x2 + f(y2 + 4x2). (1)

The calculation

ux(x, y) = 2x+ 8xf ′(y2 + 4x2), uy(x, y) = 2yf ′(y2 + 4x2), (2)

makes it clear that it is indeed a solution of the PDE yux − 4xuy = 2xy.
To find the particular solution, we enforce the side condition

u(x, 0) = x2 + f(4x2) = x4,

which, under the substitution z = 4x2, yields

f(z) =
z2

16
− z

4
=
z(z − 4)

16
, (z ≥ 0).

Substituting this back into (1), we conclude

u(x, y) = x2 +
(y2 + 4x2)2

16
− y2 + 4x2

4
=

(y2 + 4x2)2 − 4y2

16
.

Problem 2.2:3d

Statement. Find the parametric form of the solution of yux−4xuy = 2xy, which satisfy the
side condition u(s, s3) = 1.
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Solution. The characteristic equation in parametric form is

xt = y, yt = −4x. (3)

We differentiate the first equation, and substitute yt from the second, to get

xtt = yt = −4x.

The general solution of this ODE is

x(t) = A cos(2t) +B sin(2t), ⇒ y(t) = xt(t) = −2A sin(2t) + 2B cos(2t).

For every pair of constants A and B, the pair of functions x(t) and y(t) gives one characteristic
curve (as t runs over the real numbers). We want to choose A and B so that the parameter
value t = 0 corresponds to an intersection point between the characteristic curve and the
side condition curve. Since different characteristic curves intersect the side condition curve
at different points, this offers us a possibility to give identities to the characteristic curves by
where they intersect the side condition curve. In turn, this means that the parameterization
(with the parameter s) of the side conditions curve can be used to label the characteristic
curves. Now we proceed to implement these ideas. We use the functions x(s, t) and y(s, t)
to describe the family of characteristic curves: for a fixed value of s we have a characteristic
curve as t runs over the real numbers, and different values of s would correspond to different
characteristic curves. Thus we have

x(s, t) = As cos(2t) +Bs sin(2t), y(s, t) = −2As sin(2t) + 2Bs cos(2t),

with the constants As and Bs depending on s. Their dependence on s should be inferred from
the conditions

x(s, 0) = s, y(s, 0) = s3, (4)

which gives As = s and Bs = s3/2, and so

x(s, t) = s cos(2t) + 1
2s

3 sin(2t), y(s, t) = −2s sin(2t) + s3 cos(2t). (5)

Let us calculate the t-derivative of the solution u along the characteristic curves

d

dt
u(x(s, t), y(s, t)) = y(s, t)ux(x(s, t), y(s, t))− 4x(s, t)uy(x(s, t), y(s, t))

= 2x(s, t)y(s, t)

=
s6 − 4s2

4
sin(4t) + s4 cos(4t),

where we have taken into account (3) in the first line, used the PDE yux− 4xuy = 2xy in the
second line, and finally substituted (5) in the third line. We can integrate this in t and get

U(s, t) =
s4

4
sin(4t) +

4s2 − s6

16
cos(4t) + C(s), (6)

where we have used the notation U(s, t) = u(x(s, t), y(s, t)).
Now let us step back and examine the geometry of the parameterization we have obtained.

We know that as t runs over the real numbers with s fixed, the point P (s, t) = (x(s, t), y(s, t))
traces out an ellipse centred at the origin. The functions sin(2t) and cos(2t) both have period
π, so for example, t running from t0 to t0 + π corresponds to the point P (s, t) making one
full ellipse around the origin, in the clockwise direction. Each characteristic curve (except the
trivial one consisting of the origin only) intersects the side condition curve y = x3 exactly
twice. Put another way, for s 6= 0 and t real number, the equation P (−s, t) = P (s, t + τ) is
satisfied if and only if τ = πn+ 1

2π for some integer n. This means that the function U(s, t)

from (6) defines a function of x and y if and only if it satisfies U(−s, t) = U(s, t + πn + 1
2π)

for any integer n. It is a quite restrictive condition, but fortunately the first two terms in (6)
are even in s and periodic in t with period 1

2π, reducing the condition to C(−s) = C(s). To
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Figure 1. Characteristic curves and the side condition curve for Problem 2.2:3(d).

conclude, there exists a solution of yux − 4xuy = 2xy satisfying the side condition U(s, 0) =
γ(s) if and only if γ(s) gives rise to C in (6) that is even.

It remains to check whether or not our side condition U(s, 0) = 1 leads to an even C.
Enforcing the side condition gives C(s) = 1− (4s2 − s6)/16, or

U(s, t) =
s4

4
sin(4t) +

4s2 − s6

16
(cos(4t)− 1) + 1.

Since C is an even function, the above expression defines a solution of the problem.

Problem 2.2:4

Statement. Show that the PDE yux − 4xuy = 2xy has no solution satisfying the side con-
dition u(x, 0) = x3. Explain the result in terms of characteristic curves.

Solution. The equation is the same as in the preceding problem, except that the side con-
dition is the function x3 on the x-axis. We proceed as in the preceding solution to find a
parameterization of the characteristic curves, keeping in mind that (4) should be replaced by

x(s, 0) = s, y(s, 0) = 0,

which gives As = s and Bs = 0, and so

x(s, t) = s cos(2t), y(s, t) = −2s sin(2t).

The equation for the t-derivative of u is

d

dt
u(x(s, t), y(s, t)) = 2x(s, t)y(s, t) = −2s2 sin(4t),

implying that

U(s, t) =
s2

2
cos(4t) + C(s),
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where U(s, t) = u(x(s, t), y(s, t)). The same argument as in the preceding solution gives the
compatibility condition that C must be even. However, the side condition U(s, 0) = s3 leads
to C(s) = s3 − s2/2, which is not even, hence the nonexistence.

Each nontrivial characteristic curve, which is an ellipse centred at the origin, intersects the
x-axis twice. So not all side conditions would give rise to a solution. In order for a solution
to exist, the side condition must be compatible with the behaviour of the solution along the
characteristic curves dictated by the differential equation. In this particular case, we see that
the side condition is not compatible with the PDE.

Problem 2.2:5

Statement. Show that the only solutions of the PDE xux + 2yuy = 0 that are C1 and
defined for all (x, y) are the constant functions (e.g., u(x, y) = 5). Hint: Observe that the
characteristic curves all issue from the origin.

Solution. Suppose that u is a C1 function which satisfies our equation on the whole plane
R2, and let A = u(0, 0). Looking for the characteristic curves in parametric form, we discover
that they are

x(t) = x0e
t, y(t) = y0e

2t, (7)

where x0 and y0 are constants. Pick an arbitrary point (x0, y0) on the plane R2, and consider
the characteristic curve (7) going through it. The PDE tells us that u must be constant along
this curve. Let B = u(x0, y0) be the value of u on this curve. By definition of continuity, for
any ε > 0 there exists δ > 0 such that whenever x2 + y2 < δ2 we have |u(x, y) − A| < ε. In
words, by choosing the point (x, y) close enough to the origin, we can make u(x, y) arbitrarily
close to the value u(0, 0). Now let us observe that (x(t), y(t)) in (7) tends to the origin as
t→ −∞, implying that for any δ > 0 there is tδ ∈ R such that x(tδ)

2 + y(tδ)
2 < δ2. In other

words, the characteristic curve (7) contains points that are arbitrarily close to the origin.
Combined with the above discussion about continuity, this means that for any ε > 0 we have
|B−A| < ε. Hence u(x0, y0) = B = A, and as (x0, y0) is an arbitrary point, we conclude that
u is constant thoughout the plane.

Problem 2.2:8

Statement. Consider the PDE sin(x)ux − y cos(x)uy = 0.
(a) Sketch the characteristic curves of this PDE.
(b) Show that any regular side condition curve, which transversely (i.e., at a nonzero

angle) intersects, exactly once, any characteristic curve of this PDE that it encounters, must
be contained in a vertical strip of width 2π.

(c) Deduce that infinitely many side condition curves are needed in order to uniquely
determine a solution of this PDE, which is defined throughout the xy-plane.

(d) Show that, given an infinite family of C1 functions, say fn(y), such that fn(0) = 0 and
f ′n(0) = 0 (n = 0,±1,±2, . . .), there is a solution u(x, y) (C1 for all (x, y)) of the PDE which
satisfies each of the infinitely many side conditions

u(nπ + 1
2π, y) = fn(y), for n = 0,±1,±2, . . . .

Solution. (a) The characteristic equation is given by

dy

dx
= −y cotx.

which can be integrated (somewhat sloppily) as

log y = − log sinx+ C, ⇒ y(x) =
A

sinx
,
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for some constant A. To make up for the sloppiness, we can confirm

y′(x) = −A cosx

sin2 x
= −y(x) cotx,

provided sinx 6= 0, i.e., x 6= nπ for any integer n. If x = nπ for some integer n, we can resort
to the characteristic equation in parametric form

xt = 0, yt = −y,
and see that the vertical half lines {(nπ, y) : y > 0} and {(nπ, y) : y < 0}, as well as the points
(nπ, 0), where n is an integer, are characteristic curves. To summarize, for each integer n, we
have the following set of characteristic curves:

i) The curve y(x) = A/sinx, where nπ < x < nπ + π, for each real number A;
ii) The vertical half lines {(nπ, y) : y > 0} and {(nπ, y) : y < 0};
iii) The point (nπ, 0).

The characteristic curves are sketched in Figure 2.
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Figure 2. Characteristic curves for Problem 2.2:8.

(b) Assume the contrary, i.e., assume that there is a regular curve Γ, which transversely
intersects, exactly once, any characteristic curve that it encounters, which is not contained
in a vertical strip of width 2π. Let (α(s), β(s)) be a parameterization of Γ. Our assumption
means that there are parameter values s0 and s1 such that |α(s0) − α(s1)| ≥ 2π. Without
loss of generality we can assume α(s0) < α(s1) (otherwise interchange the roles of s0 and s1).
Then the interval [α(s0), α(s1)], being an interval of length greater than 2π, must contain an
interval of the form [nπ, nπ + π] for some integer n. Since the function α(s) is continuous,
there are parameter values s3 and s4 such that α(s3) = nπ and α(s4) = nπ+π. Without loss
of generality, we can assume that s3 < s4 and that α(s) ∈ [nπ, nπ + π] for all s ∈ [s3, s4].

Let us consider first the case β(s3) > 0. Since the half line {(nπ, y) : y > 0} is a character-
istic curve, the transversality condition gives α′(s3) 6= 0. This means that Γ is described by
the equation

y(x) = β(s3) +
β′(s3)

α′(s3)
(x− nπ) + g(x− nπ),
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for x close to nπ, with some C1 function g satisfying g(0) = g′(0) = 0. Given a point (x0, y0)
on Γ, say, with y0 > 0 and x0 > nπ but x0 − nπ small, the characteristic curve

y(x) =
A

sinx
, with A = y0 sinx0, (8)

goes through the point (x0, y0). At that point, the slope of y(x) = A/ sinx is y′(x0) =
−y0 cotx0, which goes to −∞ as (x0, y0) approaches (nπ, β(s3)). Hence there exist points
(x0, y0) and (x∗, y∗) on Γ with x∗ > x0 > nπ and x∗ − nπ small, such that

y∗ >
y0 sinx0
sinx∗

,

that is, the characteristic curve that intersects Γ at (x0, y0) goes below Γ for the values of
x that are immediately right to x0. Let us denote by s0 and s∗ the parameter values of Γ
corresponding to the points (x0, y0) and (x∗, y∗). Then the function

f(s) = β(s)− y0 sinx0
sinα(s)

,

satisfies

f(s0) = 0, and f(s∗) > 0.

Now, as s → s4, we have β(s) → β(s4), but y0 sinx0
sinα(s) → ∞, since α(s) ∈ (nπ, nπ + π) and

α(s)→ nπ+π. This implies that f(s)→ −∞, hence by continuity there is s∗∗ ∈ (s∗, s4) such
that f(s∗∗) = 0, meaning that the characteristic curve (8) intersects Γ (at least) twice (once
at s0, and once at s∗∗). We have established the desired contradiction.

The case β(s3) < 0 can be treated in the same way. If β(s3) = 0 but β(s4) 6= 0, we can
still use the same approach, by replacing the roles of s3 and s4.

What is left is only the case β(s3) = β(s4) = 0. We can assume the existence of an
s∗ ∈ (s3, s4) such that β(s∗) 6= 0, since otherwise Γ would have to contain, therefore intersect
more than once, the entire characteristic curve {(x, 0) : nπ < x < nπ + π}. Suppose further
that β(s∗) > 0. Then there exists a characteristic curve that crosses the line segment joining
the points (α(s∗), β(s∗)) and (α(s∗), 0), not touching the endpoints. This characteristic curve
must approach +∞ as x tends to nπ or nπ + π. But the curve Γ stays bounded (in fact it
joins the points (0, nπ) and (0, nπ+π)), which exhibits at least two common points for Γ and
the characteristic curve we are considering. The case β(s∗) < 0 is completely analogous.

(c) Since any reasonable side condition curve must be confined in a vertical strip, there
will be characteristic curves that do not intersect the side condition curve at all, meaning
that one side condition curve cannot intersect all characteristic curves. One side condition
curve would be enough to determine the solution on a vertical strip, but note that we want
to determine the solution throughout the xy-plane. Even finitely many side condition curves
are not enough, since they would occupy a vertical strip of only a finite width. Therefore we
need infinitely many side condition curves.

(d) The side condition curves are the vertical lines {nπ + 1
2π} × R where n is an arbitrary

integer. Every characteristic curve of type i) from Part (a) intersects exactly one side condition
curve, exactly once and transversely. Hence the solution is determined on the vertical strips
(nπ, nπ+ π)×R. We only need to check what happens at the vertical lines {nπ}×R. Given
a point (x0, y0) in the strip (nπ, nπ + π)× R, the characteristic curve

y(x) =
A

sinx
, with A = y0 sinx0,

goes through the point (x0, y0). This characteristic curve intersects the side condition curve
{(nπ+ 1

2π, y) : y ∈ R} at y = (−1)ny0 sinx0. So at (x0, y0), the solution is given by u(x0, y0) =
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fn((−1)ny0 sinx0). We can omit the subscripts from x0 and y0 and write

u(x, y) = fn((−1)ny sinx), for nπ < x < nπ + π.

As x approaches nπ or nπ + π, the argument of fn tends to 0, so (since f(0) = 0) by
continuity u(x, y) goes to 0. Let us define u(nπ, y) = 0 for all y, which is necessary if u were
to be continuous. The partial derivatives of u are given by

ux(x, y) = (−1)ny cosx · f ′n((−1)ny sinx), uy(x, y) = (−1)n sinx · f ′n((−1)ny sinx),

which tend to 0 as x approaches nπ or nπ+π, by continuity of f ′n and the fact that f ′n(0) = 0.
Note that one does not even need to use the fact f ′n(0) = 0 to infer uy(x, y)→ 0. We can now
conclude that the solution u is C1 and is uniquely determined by the side conditions.

Problem 3.1:1

Statement. Let u(x, t) be a solution of ut = kuxx. Show that the following facts hold.
(a) For constants a, x0 and t0, the function v(x, t) = u(ax−x0, a2t− t0) satisfies vt = kvxx.

(b) For any constant k′, the function v(x, t) = u(x, (k
′

k )t) satisfies vt = k′vxx.

(c) The function v(x, t) = t−
1
2 exp(− x2

4kt) · u(xt ,−
1
t ) satisfies vt = kvxx.

Solution. (a) By a direct computation we have

vt(x, t) = a2ut(ax− x0, a2t− t0), vxx(x, t) = a2uxx(ax− x0, a2t− t0),
which confirms

vt(x, t) = a2ut(ax− x0, a2t− t0) = a2kuxx(ax− x0, a2t− t0) = kvxx(x, t),

where we have used the fact that ut = kuxx.
(b) Similarly to the preceding case, we have

vt(x, t) =
k′

k
ut(x, (

k′

k
)t), vxx(x, t) = uxx(x, (

k′

k
)t),

and so

vt(x, t) =
k′

k
ut(x, (

k′

k
)t) =

k′

k
kuxx(x, (

k′

k
)t) = k′vxx(x, t).

(c) Let w(x, t) = t−
1
2 exp(− x2

4kt), so that v(x, t) = w(x, t)u(xt ,−
1
t ). We have

wt(x, t) = −1

2
t−

3
2 exp(− x2

4kt
) + t−

1
2 exp(− x2

4kt
) · x

2

4kt2
,

wx(x, t) = t−
1
2 exp(− x2

4kt
) · (− x

2kt
),

and

wxx(x, t) = t−
1
2 exp(− x2

4kt
) · x2

4k2t2
+ t−

1
2 exp(− x2

4kt
) · (− 1

2kt
).

We note that
wt = kwxx, and wx(x, t) = − x

2kt
w(x, t). (9)

Let us calculate vt and vxx as

vt(x, t) = wt(x, t)u(
x

t
,−1

t
) + w(x, t)

(
− x
t2
ux(

x

t
,−1

t
) +

1

t2
ut(

x

t
,−1

t
)

)
,

vx(x, t) = wx(x, t)u(
x

t
,−1

t
) + w(x, t)

1

t
ux(

x

t
,−1

t
),

and

vxx(x, t) = wxx(x, t)u(
x

t
,−1

t
) + 2wx(x, t)

1

t
ux(

x

t
,−1

t
) + w(x, t)

1

t2
uxx(

x

t
,−1

t
).
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Now by comparing the expressions for vt and vxx, and taking (9) into account, we conclude
vt = kvxx.


