
SOLUTIONS TO PROBLEMS 8B AND 9 FROM ASSIGNMENT 1

Problem 8b

Statement. If a(x), b(x) and c(x) are continuous with a(x) never zero, then the ODE
a(x)y′′ + b(x)y′ + c(x)y = 0 has a unique solution y(x) with given values for y(x0) and
y′(x0). Assuming this, show that no solution of this ODE can have a graph which is tangent
to the x-axis at some point, unless the solution is identically zero.

Solution. Suppose that the graph of y(x) is tangent to the x-axis at x0, meaning that
y(x0) = 0 and y′(x0) = 0. Then we observe that the identically-zero function y(x) ≡ 0 is a
solution of the ODE with y(x0) = 0 and y′(x0) = 0. By uniqueness, this is the only solution
of our ODE. In other words, there is no function y(x) that is not identically zero and satisfies
the ODE together with the conditions y(x0) = 0 and y′(x0) = 0.

Problem 9

Statement. (a) If ar2 + br + c = 0 has only one root (of multiplicity 2) r = − b
2a , show that

f(x)erx is a solution of ay′′ + by′ + cy = 0 if and only if f ′′(x) = 0.
(b) For distinct numbers r1 and r2 observe that

lim
r2→r1

er2x − er1x

r2 − r1
= xer1x.

How is this observation related to the result in part (a) ?

Solution. (a) Let y(x) = f(x)erx. We calculate

y′(x) = (f ′(x) + f(x)r)erx, y′′(x) = (f ′′(x) + f ′(x)r)erx + (f ′(x) + f(x)r)rerx,

and

ay′′ + by′ + cy = a(f ′′ + rf ′)erx + ar(f ′ + rf)erx + b(f ′ + rf)erx + cferx

= af ′′erx + (2ar + b)f ′erx + (ar2 + br + c)ferx

= af ′′erx,

since 2ar+ b = 0 and ar2 + br+ c = 0. Here we omitted the variable x from f(x) etc. for the
sake of readability. From the preceding calculation, we infer that since aerx is never zero, the
quantity ay′′ + by′ + cy vanishes exactly where f ′′ vanishes.

To conclude, supposing that A and B are constants, the function

y(x) = Aerx +Bxerx, (1)

is a solution of the ODE ay′′ + by′ + cy = 0. Moreover, any solution of this (2nd order) ODE
has the form (1), since the functions erx and xerx are linearly independent.

(b) One possible way to compute the limit is as follows. We write

er2x − er1x = er1x(e(r2−r1)x − 1),

and with α = r2 − r1, look at the Taylor expansion

eαx = 1 + αx+
1

2
α2x2 + . . . = 1 + αx+ αg(α),
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where we consider x as fixed and α small (as we want to send α to 0), and g(α) is a continuous
function of α that goes to 0 as α→ 0. Thus we have

er2x − er1x

r2 − r1
=
eαx − 1

α
er1x =

αx+ αg(α)

α
er1x = (x+ g(α))er1x,

which makes it obvious that the limit as α→ 0 is xer1x.
As for how this is related to part (a), if the roots r1 and r2 of ar2 + br+ c = 0 are distinct,

the general solution of ay′′ + by′ + cy = 0 is given by

y(x) = Cer1x +Der2x,

with C and D constants. With this result as our starting point, we can try to extract some
information on the case r2 = r1 by taking the limit α = r2 − r1 → 0. Having in mind the
limit we just computed, let us put D = −C = 1/(r2 − r1) to get

y(x) = Cer1x +Der2x =
er2x − er1x

r2 − r1
→ xer1x.

We have produced a new linearly independent solution by suitably scaling the constants C
and D as r2 → r1.


