
SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4

Problem 5 from Assignment 3

Statement. Let Ω be an n-dimensional bounded domain with smooth boundary. Show that
the eigenvalues of the Laplacian on Ω with homogeneous Neumann boundary condition cannot
be positive. Show also that the eigenvalues of the Laplacian on Ω with homogeneous Dirichlet
boundary condition are strictly negative. (Hint for the Dirichlet case: The Laplace equation
has a unique solution with the homogeneous Dirichlet boundary condition.)

Solution. Let us denote by ν = (ν1, . . . , νn) the outward unit normal vector to the boundary
∂Ω. Note that ν is a vector field that is defined at each point of the boundary ∂Ω. That u
is an eigenfunction of the Laplacian with the homogeneous Neumann condition means that
there is a number λ ∈ R called the eigenvalue corresponding to u, such that

∆u = λu in Ω, and ∂νu = 0 on ∂Ω, (1)

where ∂νu is the normal derivative

∂νu = ν1ux1 + . . .+ νnuxn .

We require u to be not identically zero, since the zero function u ≡ 0 satisfies (1) for any
λ ∈ R. Recall Green’s first identity∫

Ω
v∆u =

∫
∂Ω
v∂νu−

∫
Ω
∇v · ∇u,

which can be proven by applying the divergence theorem to the vector field v∇u. Let us
multiply the eigenvalue equation ∆u = λu by u, and integrate over the domain Ω, to get∫

Ω
u∆u = λ

∫
Ω
u2.

Applying Green’s identity to the left hand side gives∫
∂Ω
u∂νu−

∫
Ω
|∇u|2 = λ

∫
Ω
u2,

which then implies

λ

∫
Ω
u2 = −

∫
Ω
|∇u|2, (2)

because the boundary integral term is zero due to the homogeneous Neumann condition. From
the last equality we infer λ ≤ 0 since u must be nonzero in order to be an eigenfunction.

For the Dirichlet case, by following a similar reasoning we can conclude that λ ≤ 0. If there
is an eigenfunction u with λ = 0, it must satisfy

∆u = 0 in Ω, u = 0 on ∂Ω.

Clearly, the identically-zero function u ≡ 0 satisfies this equation, and as given in Hint, it is
the only solution. So there is no nontrivial function u that satisfies ∆u = 0, showing that all
eigenvalues are nonzero (therefore λ < 0).
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A variation of Problem 4 from Assignment 4

Statement. Solve the Dirichlet boundary value problem for the Laplace equation ∆u = 0 in
the region between two concentric spheres of radii 1 and 2. What simplifications do we get
in the solution process if the Dirichlet boundary data are independent of the azimuthal angle
(longitude) ϕ?

Solution. Employing spherical coordinates, the equation we need to solve is

∆u = 0, in {(r, θ, ϕ) : 1 < r < 2}, and u(1, θ, ϕ) = f(θ, ϕ), u(2, θ, ϕ) = g(θ, ϕ).

Recall that the 3-dimensional Laplacian in spherical coordinates is

∆u =
(r2ur)r
r2

+
(uθ sin θ)θ
r2 sin θ

+
uϕϕ

r2 sin2 θ

= urr +
2
r
ur +

1
r2
uθθ +

cot θ
r2

uθ +
1

r2 sin2 θ
uϕϕ.

Let us look for a solution that can be written as u(r, θ, ϕ) = R(r)M(θ, ϕ). Substituting this
into the equation ∆u = 0, we get

R′′M +
2
r
R′M +

1
r2
RMθθ +

cot θ
r2

RMθ +
1

r2 sin2 θ
RMϕϕ = 0,

and multiplying by r2

RM and rearranging, we have

−r
2R′′

R
− 2rR′

R
=
Mθθ

M
+
Mθ cot θ
M

+
Mϕϕ

M sin2 θ
= λ.

We recognise the equation given by the second equality sign as the equation for the spherical
harmonics, so for each n = 0, 1, . . ., and for each m = 0,±1, . . . ,±n, we have the solution

M(θ, ϕ) = Yn,m(θ, ϕ), with λ = −n(n+ 1).

Recall that the spherical harmonics are explicitly given by

Yn,m(θ, ϕ) = sin|m|(θ)P (|m|)
n (cos θ) Φm(ϕ), where Φm(ϕ) =

{
cos(mφ) for m ≥ 0,
sin(mφ) for m < 0,

and where Pn is the Legendre polynomial of degree n.

(a) n = 1, 2, 3, 4 from top to bottom, and
m = 0, . . . , n from left to right

(b) n = 3, 4, 5, 6 from top to bottom, and m = 1, . . . , n
from left to right

Figure 1. Spherical harmonics Ynm
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Taking into account that λ = −n(n+ 1), the equation for R now reads

r2R′′ + 2rR′ = n(n+ 1)R.

Trying the form R(r) = rα gives

α(α− 1) + 2α = n(n+ 1),

which has the solutions α = n and α = −(n+ 1). We conclude that for each n ∈ N0, and for
each m ∈ Z ∩ [−n, n], we have two independent solutions

u(r, θ, ϕ) = rnYn,m(θ, ϕ), and u(r, θ, ϕ) = r−(n+1)Yn,m(θ, ϕ),

and so the general solution is given by a linear combination of all of those:

u(r, θ, ϕ) =
∞∑
n=0

n∑
m=−n

(
An,mr

n +
Bn,m
rn+1

)
Yn,m(θ, ϕ).

The coefficients An,m and Bn,m are to be found from the boundary conditions. This means,
assuming the following expansions

f(θ, ϕ) =
∞∑
n=0

n∑
m=−n

f̂n,mYn,m(θ, ϕ), g(θ, ϕ) =
∞∑
n=0

n∑
m=−n

ĝn,mYn,m(θ, ϕ),

we have

An,m +Bn,m = f̂m,n, and An,m2n +
Bn,m
2n+1

= ĝm,n.

This is easily solved as

An,m =
2n+1ĝm,n − f̂m,n

22n+1 − 1
, and Bn,m =

22n+1f̂m,n − 2n+1ĝm,n
22n+1 − 1

.

Now, for the second part of the question, when the boundary data are independent of
ϕ, the solution must also be independent of ϕ. Then one way to solve the problem would
be to first solve the problem in full generaility as in the first part of the question, and then
impose the ϕ-independence on the resulting solution. The spherical harmonics Yn,m that do
not depend on ϕ are the ones with m = 0, i.e, the zonal harmonics

Yn,0(θ, ϕ) = Zn(θ) ≡ Pn(cos θ),

hence the solution is simply

u(r, θ, ϕ) =
∞∑
n=0

(
Anr

n +
Bn
rn+1

)
Pn(cos θ).

An alternaitve, more direct approach is to impose the ϕ-independence right from the start;
so we look for a solution u(r, θ) = R(r)Θ(θ) rather than u(r, θ, ϕ) = R(r)M(θ, ϕ), and we get

−r
2R′′

R
− 2rR′

R
=

Θ′′

Θ
+

Θ′ cot θ
Θ

= λ.

We recognise the equation for Θ as the equation leading to the Legendre equation

(1− x2)y′′ − 2xy′ = λy,

where y(x) = Θ(θ) with x = cos θ, meaning that we have a solution Θ(θ) = Pn(cos θ) with
λ = −n(n+ 1) for each n = 0, 1, . . .. The rest of the solution proceeds completely in parallel
to the solution of the first part of the question.
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Problem 5 from Assignment 4

Statement. Consider a bounded domain, and assume that the homogeneous Neumann bound-
ary condition is imposed on all problems we consider in this question. Show that the Laplacian
posseses an eigenvalue equal to zero, i.e., show that there is a nonzero function v (having the
homogeneous Neumann boundary condition) such that ∆v = 0. What would be the effect of
this zero eigenvalue on the solutions of the heat equation ut = ∆u, and of the wave equation
utt = ∆u? What can you say about the solvability of the Poisson equation ∆u = f?

Solution. Let us denote the domain by Ω ⊂ Rn, and let ν = (ν1, . . . , νn) be the outward unit
normal vector to the boundary ∂Ω. The Laplace eigenproblem under the Neumann condition
reads

∆v = λv, in Ω, and ∂νv = 0, on ∂Ω, (3)

where ∂νv is the normal derivative

∂νv = ν1vx1 + . . .+ νnvxn .

To show that the Laplacian posseses a zero eigenvalue, we need to find a nontrivial function
v that satisfies (3) with λ = 0. By working out the one dimensional case ∆v ≡ v′′ = 0
and v′(0) = v′(1) = 0 on the interval (0, 1), whose solutions are the constant functions, we
guess that in general case the constant functions might be eigenfunctions with λ = 0. It is
straightforward to see that for v = const we have

∆v = vx1x1 + . . .+ vxnxn = 0, ∂νv = ν1vx1 + . . .+ νnvxn = 0,

showing that the Laplacian has a zero eigenvalue, with constants being one of the correspong-
ing eigenfunctions, if there is any other than constants. Note that we count all constants
together as one eigenfunction, since if v satisfies (3), then so does kv for any k ∈ R. To check
if there is any eigenfunction other than constants, recall the identity (2) we have derived for
the Laplace eigenfunctions with the Neumann boundary condition, which becomes∫

Ω
|∇v|2 = 0,

in the current case with λ = 0. The quantity under integration sign is nonnegative, meaning
that the quantity must be zero everywhere. In other words, we have the gradient of v vanishing
everywhere, and so v must be constant. This argument can also be used from the start to
discover that constants are eigenfunctions with zero eigenvalue.

Let v0, v1, . . . be the Laplace eigenfunctions with the corresponding eigenvalues λ0, λ1, . . .,
i.e., for k ∈ N0, let

∆vk = λkvk in Ω, and ∂νvk = 0 on ∂Ω.

Suppose, for concreteness that the eigenvalues are arranged as follows

λ0 = 0 > λ1 ≥ λ2 ≥ . . . .
In particular, this means that v0 is a constant function, so we can assume that v0 = 1. We
know that λk → −∞ as k → ∞, and that any function f : Ω → R with finite energy can be
decomposed in terms of the eigenfunctions as

f =
∞∑
k=0

f̂kvk, (4)

where we call {f̂k} the coordinates of f in the basis {vk}, and we refer to f̂kvk as the k-th
mode of f . Accordingly, f is the sum of its individual modes, and one can think of |f̂k| as
measuring the size of the k-th mode. It is a general fact that as k gets large the function vk
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becomes more and more oscillatory, and so the modes with large (or small) k are called high
(or low) frequency modes.

Let us first treat the Poisson problem

∆u = f in Ω, and ∂νu = 0 on ∂Ω.

Expanding the unknown solution u in terms of the eigenfunctions, we get

u =
∞∑
k=0

ûkvk ⇒ ∆u =
∞∑
k=0

ûk∆vk =
∞∑
k=0

ûkλkvk =
∞∑
k=0

f̂kvk.

Equating the individual coordinates, we have

λkûk = f̂k ⇒ 0 · û0 = f̂0 and ûk =
f̂k
λk

for k = 1, 2, . . . ,

where we have taken into account that λ0 = 0 and λk 6= 0 for k > 0. We see that as a result of
division by λk, the high frequency modes of u are much smaller than the corresponding modes
of f , i.e., the coordinates of u decays faster than the coordinates of f , with the difference in
the decay rates given by the growth rate of |λk|. More crucially, we also see that because of
the existence of the zero eigenvalue, in order for the Poisson equation to be solvable, the right
hand side f must have a vanishing zero-mode, i.e., we must require f̂0 = 0. If this requirement
is met, the function

u = û0v0 +
∞∑
k=1

f̂k
λk
vk = û0 · 1 +

∞∑
k=1

f̂k
λk
vk,

with any û0 ∈ R satisfies the Poisson equation. If u is a solution, then for any constant k,
u + k is also a solution. Finally, let us clarify what f̂0 = 0 means. By multiplying (4) by v0

and integrating over Ω, and then taking into account the orthogonality of the eigenfunctions,
we get

f̂0

∫
Ω
|v0|2 =

∫
Ω
fv0 ⇒ f̂0 =

1
vol(Ω)

∫
Ω
f,

that is, f̂0 is just the average of f over the domain Ω. Here vol(Ω) denotes the volume of Ω.
We conclude that the necessary and sufficient condition for solvability of the Poisson problem
with the homogeneus Neumann boundary condition is that the right hand side function has
average zero.

Now let us turn to the heat equation

ut = ∆u, u|t=0 = f,

with the homogeneus Neumann boundary condition. Since the solution u depends both on
the spatial variable x ∈ Ω and time t, the coordinates (and so the modes) of u must depend
on t. More specifically, we have

u(x, t) =
∞∑
k=0

ûk(t)vk(x) ⇒ ut =
∞∑
k=0

û′kvk, ∆u =
∞∑
k=0

λkûkvk,

where û′k denotes the time derivative of ûk. Substituting the latter formulas into the heat
equation, we infer

û′k = λkûk,
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which is solved by ûk(t) = Ake
λkt. From the initial condition we get Ak = f̂k, and so

u(x, t) =
∞∑
k=0

f̂ke
λktvk(x) = f̂0 +

∞∑
k=1

f̂ke
λktvk(x),

where we have taken into account that λ0 = 0 and v0 = 1. The effect of the zero eigenvalue
is clear: There is a mode (namely the zero mode) that does not evolve in time, and since all
other modes are decaying, as t→∞ the solution approaches that mode, i.e., u(x, t)→ f̂0. In
our case, the zero mode is simply the average of the initial datum f . Note that there was no
trouble as to the solvability of the problem caused by the zero eigenvalue, to be contrasted
with the Poisson case.

Finally, let us consider the wave equation

utt = ∆u, u|t=0 = f, ut|t=0 = g,

with the homogeneus Neumann boundary condition. Expanding the solution as in the previous
paragraph, we have

û′′k = λkûk,

whose solution is given by

û0(t) = A0 +B0t, ûk(t) = Ak cos(ωkt) +Bk sin(ωkt) for k = 1, 2, . . . ,

where ωk =
√
−λk. Now we put together the individual modes of u to get

u(x, t) = A0 +B0t+
∞∑
k=1

(Ak cos(ωkt) +Bk sin(ωkt)) vk(x),

where we have taken into account that v0 = 1. From the initial conditions we have Ak = f̂k
for all k, and B0 = ĝ0 and Bk = ĝk/ωk for nonzero k, leading to

u(x, t) = f̂0 + ĝ0t+
∞∑
k=1

(
f̂k cos(ωkt) +

ĝk
ωk

sin(ωkt)
)
vk(x).

The effect of the zero eigenvalue is that there is a mode (namely the zero mode) that does
not oscillate in time. Depending on the average of g, the zero-mode may be evolving linearly
in time, and all the other modes oscillate around this mode.


