
SOLUTIONS TO PROBLEMS 3, 5, AND 9 FROM ASSIGNMENT 1

Problem 3

Statement. Consider the Poisson equation uxx = f on the interval (0, 1) subject to the
boundary conditions ux(0) = α (Neumann), and u(1) = β (Dirichlet). Find the solution
using Green’s function approach.

Solution. The boundary value problem we are trying to solve is

uxx = f in (0, 1), ux(0) = α, u(1) = β. (1)

Following the Green function philosophy, we suppose that the solution u, depending on the
boundary conditions α, β, and the right hand side f , has the form

u(x) = αG0(x) + βG1(x) +
∫ 1

0
G(x, t)f(t)dt. (2)

What gives this approach its power is that the Green functions G0(x), G1(x) and G(x, t) are
the same no matter what values α, β, and f have for the particular instance of the boundary
value problem (1). So once you have G0, G1 and G, you can solve the problem for every value
of α, β, and f by using (2), moreover, the functions G0, G1 and G themselves can be found by
solving the problem for carefully chosen data α, β, and f . For example, we see from (2) that
G0 would be the solution of the problem (1) if we had α = 1, β = 0, and f = 0. Similarly,
G1 is the solution if α = 0, β = 1, and f = 0. Noting that f = 0 means uxx = 0, hence that
u is a linear function, these solutions are easy to compute:

• For α = 1, β = 0, and f = 0, the solution is u(x) = x− 1, hence G0(x) = x− 1.
• For α = 0, β = 1, and f = 0, the solution is u(x) = 1, hence G1(x) = 1.

At this point, let us record our progress:

u(x) = α(x− 1) + β +
∫ 1

0
G(x, t)f(t)dt, (3)

and note that our aim now is to find G(x, t). To move forward, observe that α and β were
just numbers (as opposed f , which is a function), and we found the Green function G0 by
switching off all the inputs except α (similarly for G1 and β). The situation with f is a bit
complex because it is a function. Nevertheless, if you fix t between 0 and 1, then f(t) is just a
plain old number, meaning that we can treat f as an infinite collection of numbers, with one
number for each t ∈ (0, 1). So an idea would be to fix some z ∈ (0, 1), and consider such an f
that f(z) = 1 and f(t) = 0 for all t not equal to z. But we quickly discover that this would not
work, because f enters in (3) through an integral only, and since f is zero everywhere except
only at the point z, the integral evaluates to zero. The trick is to introduce the so called delta
“function” δ(t), which is characterized by the properties that δ(t) = 0 for all t 6= 0, and∫ ε

−ε
g(t)δ(t)dt = g(0), (4)

for ε > 0 and for all continuous function g. Putting g(t) = 1 in this formula, we get∫ ε

−ε
δ(t)dt = 1, (5)
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which says that the area under the graph of δ is 1. Since δ(t) is zero except at t = 0, the
integral of δ can be nonzero only if δ(0) =∞, but δ(0) =∞ alone does not imply (5), because
0 · ∞ is not defined. So we just leave δ(0) undefined, and take (4) as part of the definition
of δ. The delta “function” is not a function in the ordinary sense, but it can be treated as a
function, with the only caveat that the “value” of δ at 0 must be accessed through an integral,
as in (4) or (5). One can think of δ as the density of a unit mass concentrated at 0.

Returning back to the problem at hand, in order to find G(x, z) we take the right hand side
f(t) to be δ(t− z), the delta function shifted so that the concentration is at z. Substituting
α = β = 0, and f(t) = δ(t− z) into (3), we indeed get

u(x) =
∫ 1

0
G(x, t)δ(t− z)dt =

∫ 1−z

−z
G(x, z + s)δ(s)ds = G(x, z), (6)

where we made the change of variable s = t−z, and took into account the fact that the interval
(−z, 1− z) contains the point 0 because 0 < z < 1. To reiterate, (6) says that we should find
the solution u(x) of the boundary value problem (1) with α = β = 0 and f(t) = δ(t − z),
to get G(x, z). To find the solution, first note that u(x) is linear except possibly at x = z.
Taking note of the boundary conditions ux(0) = 0 and u(1) = 0, this means that

u(x) =

{
m for x < z,

k(x− 1) for x > z,
(7)

with some constants m and k to be determined from the behavior of f at z. To extract this
information we will employ (5). The integral of f over a small interval around z gives

1 =
∫ z+ε

z−ε
f(x)dx =

∫ z+ε

z−ε
uxx(x)dx = ux(z + ε)− ux(z − ε) = k, (8)

revealing the value of k. Now we know that

ux(x) =

{
0 for x < z,

1 for x > z,
(9)

and from
u(x) =

∫ x

0
ux(s)ds, (10)

we conclude that u is continuous at z. In other words, the values of u(x) as x approaches z
from the left and right must match. Staring at (7) a bit gives m = z − 1, finally uncovering

u(x) =

{
z − 1 for x ≤ z,
x− 1 for x ≥ z.

(11)

Obviously, this is also G(x, z):

G(x, z) =

{
z − 1 for x ≤ z,
x− 1 for x ≥ z.

(12)

By substituting this into (3), we finally get

u(x) = α(x− 1) + β +
∫ 1

0
G(x, t)f(t)dt

= α(x− 1) + β +
∫ x

0
(x− 1)f(t)dt+

∫ 1

x
(t− 1)f(t)dt.

(13)

For completeness, note that we derived (13) by using the delta “function”, which we do not
have a very strict handle on. This means at this level, we cannot be sure that (13) solves (1).
But now that we have the expression (13), we can always check explicitly if (13) satisfies the
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conditions in (1). We can check off the condition u(1) = β quickly. For the others, recall the
Leibniz rule

d
dx

b(x)∫
a(x)

g(x, t) dt =

b(x)∫
a(x)

gx(x, t) dt + bx(x)g(x, b(x))− ax(x)g(x, a(x)). (14)

From (13), we compute

ux(x) = α+
∫ x

0
f(t)dt+ 1 · (x− 1)f(x) +

∫ 1

x
0 · dt− 1 · (x− 1)f(x) = α+

∫ x

0
f(t)dt,

which in particular gives ux(0) = α. Taking the derivative once again, we have

uxx(x) =
∫ x

0
0 · dt+ 1 · f(x) = f(x),

completing the proof that (13) solves (1).

Problem 5

Statement. Derive the expression for the Laplacian ∆u = uxx + uyy in polar coordinates.
Find all radially symmetric solutions of the Laplace equation ∆u = 0 for r > 0 (meaning that
∆u = 0 holds except possibly at the origin).

Solution. We address only the second part of the question. In the polar coordinates (r, φ)
the Laplacian reads

∆u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2
∂2u

∂φ2
=

(rur)r
r

+
uφφ
r2

. (15)

Since u is radially symmetric (i.e., u depends only on r), obviously uφφ = 0, so the Laplace
equation for u becomes

∆u =
(rur)r
r

= 0. (16)

In the region r > 0, we can multiply the preceding equation by r to get

(rur)r = 0, (17)

which means rur(r) = A for some constant A. Therefore

ur(r) =
A

r
. (18)

This has the solution u(r) = A log r + B, where B is a constant. In words, the radially
symmetric solutions of the Laplace equation in two dimensions are constants, and if we exclude
the point r = 0, plus multiples of log r.

Problem 9

Statement. A cavity in a conductor has the shape of a half sphere, being bounded by the
surfaces θ = 0 and r = R in spherical coordinates. A point charge q is located at θ = θq,
r = rq, and φ = 0, where 0 < θq ≤ π

2 and 0 < rq < R.
a) Give the locations and magnitudes of the image charges necessary to maintain the electric

potential ϕ = 0 at the boundary of the cavity.
b) Write down the potential inside the cavity.
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(a) Spherical coordinates

z

x

q

q1

q2

q3

θq

rq

RO

(b) Image charges are q1, q2 and q3.

Solution. In the figures above, we sketch the spherical coordinate system we use, and the
configuration of the image charges. Since everything happens in the φ = 0 plane (also known
as the xz-plane), the problem is essentially two dimensional.

One needs the image charge q1 to cancel the potential generated by q on the xy-plane, and
q2 to cancel the potential of q on the surface of the sphere. But q2 will induce a nonzero
potential on the xy-plane, while q1 induces a nonzero potential on the sphere. To cancel these
potential, we need only one additional charge q3, which is at the same time the reflection of
q2 with respect to the xy-plane, and the reflection of q1 with respect to the sphere. Note that
this is because of the symmetry of this particular geometry, and in general the reflections of
two different image charges will not coincide. It is easy to see that if q is at X = (rq, θq, 0)
then q1 is at X1 = (rq,−θq, 0), q2 is at X2 = (R

2

r1
, θq, 0), and q3 is at X3 = (R

2

r1
,−θq, 0). For

the magnitudes, we have q1 = −q, q2 = −R2

r2q
q, and q3 = R2

r2q
q.

The potential inside the cavity is the sum of the potentials induced by the individual (image
and real) charges, so we conclude

ϕ(x) =
Cq

|x−X|
− Cq

|x−X1|
− CR2q

r2q |x−X2|
+

CR2q

r2q |x−X3|
.


