Lecture 9: Advection in 1D

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

Monday January 24, 2011

Questions

- What is the solution of $u_t = \lambda u$, with u(0) = C?
- $u(t) = Ce^{\lambda t}$.
- What is an orthogonal matrix?
- A such that $A^TA = I$.
- Any symmetric matrix A can be written as A = PDP^T where D is diagonal and P is orthogonal. What are on the diagonal of D?
- The eigenvalues of A.

Advection equation

3 / 9

Let $\Omega = [0,1]^2$ be the unit square, and let g be any function defined on its boundary $\partial\Omega$. We have seen that the following problem has a solution

$$u_{xx} + u_{yy} = 0$$
 in Ω , and $u = g$ on $\partial \Omega$.

One can say that for the Laplace equation, every point is influenced by every other point.

To contrast, consider the advection equation

$$u_x + u_y = 0$$
 in Ω .

Equivalently, the directional derivative of u along n = (1,1) is zero. So u must be constant along the lines y = x + C, or in other words, we have

$$u(x, y) = F(x - y),$$

for some function F. In this case, **the points on the line** $y = x + C_1$ **do not care about what is happening on the line** $y = x + C_2$, (if $C_1 \neq C_2$).

Characteristic lines

The characteristic lines y = x + C of $u_x + u_y = 0$.

A solution of $u_x + u_y = 0$, where

$$F(x) = \frac{\sin x}{1 + x^2}.$$

Snapshots

Snapshots at y = 0, 1, and 2.

Initial value problem

Note that if u(x,y) = F(x-y), then u(x,0) = F(x). A convenient way to specify the "boundary conditions" for the advection equation is to specify the function u(x,0) = F(x). So the solution is obtained by specifying u on the line y=0 only. This "boundary condition" is called **initial condition**, and the variable y is usually associated to time, denoted by t.

The initial value problem for the advection equation is

$$u_t + cu_x = 0$$
 for $t > 0$, and $u(x, 0) = f(x)$,

where c is a constant (speed) and f is a given function.

Obviously, u is constant along the direction n=(c,1) on the (x,t)-plane. In other words, u is constant along the lines x=ct+K. Equivalently, u has the form

$$u(x, t) = F(x - ct)$$
.

The lines x = ct + K are called the **characteristic lines**.

Characteristic coordinates

The characteristic coordinates are defined by

$$\xi = x - ct$$
 and $\tau = t$.

Let $U(\xi,\tau)=u(\xi+c\tau,\tau)$, or equivalently, u(x,t)=U(x-ct,t). Then

$$u_x = U_\xi$$
, $u_t = -cU_\xi + U_\tau$, so $u_t + cu_x = U_\tau$.

In the new coordinates, the above problem is simply

$$U_{\tau} = 0$$
 for $\tau > 0$, and $U(\xi, 0) = f(\xi)$.

The solutions is $U(\xi, \tau) = f(\xi)$, and in terms of the "old" variables, we get

$$u(x,t) = U(x-ct,t) = f(x-ct).$$

Damped advection equations

Let us solve

$$u_t + cu_x = \lambda u$$
 for $t > 0$, and $u(x, 0) = f(x)$.

In characteristic coordinates, it is

$$U_{\tau} = \lambda U$$
 for $\tau > 0$, and $U(\xi, 0) = f(\xi)$.

This is an ODE, with ξ acting as a parameter, and its solution is

$$U(\xi,\tau) = C(\xi)e^{\lambda\tau}.$$

For $\tau=0$ we have $U(\xi,0)=f(\xi)$, so $C(\xi)=f(\xi)$, giving $U(\xi,\tau)=f(\xi)e^{\lambda\tau}$. In terms of the (x,t) variables, we have

$$u(x,t) = U(x-ct,t) = f(x-ct)e^{\lambda t}.$$

Symmetric hyperbolic systems

Let A be a symmetric $n \times n$ matrix, and we want to solve

$$u_t + Au_x = 0,$$

for the unknown function $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n$. We can write $A = PDP^T$ with a diagonal matrix D, and an orthogonal matrix P, meaning that $P^TP = I$. The above equation can be written as

$$u_t + PDP^T u_x = 0,$$

and after multiplying by P^T from the left, it becomes

$$P^T u_t + DP^T u_x = 0.$$

Upon introducing $q = P^T u$, the new variable q satisfies

$$q_t + Dq_x = 0.$$

This is just n separate advection equations for the components of q.