Lecture 7: Finite difference method

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

Tuesday January 18, 2011

5-point formula

2 / 4

Consider the Dirichlet problem for the 2-dimensional Poisson equation

$$-\Delta u = f$$
 in Ω ,
 $u = g$ on $\partial \Omega$.

The Laplacian can be approximated by the **5-point formula**

$$-\Delta u(x) \approx \frac{4u(x,y)-u(x+h,y)-u(x-h,y)-u(x,y+h)-u(x,y-h)}{h^2}.$$

Suppose $u(ih, kh) \approx u_{i,k}$, and at the interior nodes we require

$$4u_{i,k} - u_{i+1,k} - u_{i-1,k} - u_{i,k+1} - u_{i,k-1} = f_{ik} := h^2 f(ih, ik).$$

At the boundary nodes (i, k), we impose

$$u_{i,k} = g_{ik} := g(ih, ik).$$

So each unknown $u_{i,k}$ has its corresponding equation.

Discrete mean value property

If f=0, i.e., if u is **harmonic**, then the corresponding approximate solution satisfies

$$4u_{i,k}-u_{i+1,k}-u_{i-1,k}-u_{i,k+1}-u_{i,k-1}=0,$$

or equivalently

$$u_{i,k} = \frac{u_{i+1,k} + u_{i-1,k} + u_{i,k+1} + u_{i,k-1}}{4}.$$

So $u_{i,k}$ is the average of the values at the 4 neighbouring nodes.

Discrete maximum principle

Consider $u_{i,k}$ as a function sending the node (i,k) to the value $u_{i,k}$.

Theorem

If $u_{i,k}$ attains its maximum at an interior node, $u_{i,k}$ must be constant.

Proof.

We have the mean value property

$$u_{i,k} = \frac{u_{i+1,k} + u_{i-1,k} + u_{i,k+1} + u_{i,k-1}}{4}.$$

Suppose that $M = \max_{i,k} u_{i,k}$ and $M = u_{i,k}$ for some particular (interior) node (i,k). Then it must be the case that

$$u_{i+1,k} = u_{i-1,k} = u_{i,k+1} = u_{i,k-1} = M$$
,

otherwise they cannot have M as their average. This reasoning "propagates" to make every $u_{i,k} = M$.