Lecture 6: Dirichlet problem

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

January 17, 2011

Dirichlet problem for the Poisson equation

2 / 5

Let $\Omega \subset \mathbb{R}^3$ be a domain, and let $f:\Omega \to \mathbb{R}$ and $g:\partial\Omega \to \mathbb{R}$, where $\partial\Omega$ is the boundary of Ω . The *Dirichlet problem* is: Find $u:\Omega \to \mathbb{R}$ satisfying

$$-\Delta u = f$$
 in Ω ,
 $u = g$ on $\partial \Omega$.

For example, the electric potential φ of a charge distribution ρ inside a cavity Ω with grounded conductor boundary $\partial\Omega$, satisfies

$$-\Delta \varphi = 4\pi C \rho$$
 in Ω , and $\varphi = 0$ on $\partial \Omega$.

If $\rho(x) = Q\delta(x)$ and Ω is the ball centered at the origin, of radius R, then

$$\varphi(x) = \frac{CQ}{|x|} - \frac{CQ}{R}.$$

Method of electrostatic images

3 / 5

Suppose that we can find v satisfying $-\Delta v = f$ in Ω (and not necessarily v = g on $\partial \Omega$). If we look for u in the form u = v + h, then h must satisfy the *Dirichlet problem for the Laplace equation*

$$-\Delta h = 0$$
 in Ω ,
 $h = g - v$ on $\partial \Omega$.

Example: Suppose that the entire half space $\{x_1 \leq 0\}$ is filled with perfect conductor, and a charge Q is sitting at X = (a,0,0) with a>0. The potential u must satisfy $-\Delta u(x) = 4\pi CQ\delta(x-X)$ for $x_1>0$ and u(x)=0 for $x_1=0$. We know that

$$v(x) = \frac{CQ}{|x - X|}$$
 satisfies $-\Delta v(x) = 4\pi CQ\delta(x - X)$.

In order to have u = v + h = 0 at $x_1 = 0$, we take

$$h(x) = -\frac{CQ}{|x - X^*|},$$
 with $X^* = (-a, 0, 0).$

Spherical conductors

Now consider a grounded conducting sphere of radius R, with center at x=0, and suppose that there is a charge Q at X=(a,0,0) with $0 \le a < R$. We want to find X^* and Q^* such that

$$\frac{CQ}{|x-X|} + \frac{CQ^*}{|x-X^*|} = 0,$$

at the spherical surface. We can rearrange this as

$$Q^* = -Q \cdot \frac{|x - X^*|}{|x - X|},$$

so the ratio in the right hand side cannot depend on x anywhere on the spherical surface. From symmetry, we have $X^*=(b,0,0)$ for some b>R. This leads to

$$Q^* = -\frac{R}{a}Q$$
, and $b = \frac{R^2}{a}$.

Finite differences

Consider the Dirichlet problem for the 2-dimensional Poisson equation

$$\Delta u = f$$
 in $[0,1]^2$,
 $u = 0$ on $\partial [0,1]^2$.

A straightforward way to approximately solve this equation on a computer is to use *finite differences*. We cover the square with a *mesh* of squares of size h = 1/n for some integer n. With integers i and k, the points (hi, hk) are called *nodes* of the mesh.

The Laplacian can be approximated by the 5-point formula

$$\Delta u(x) \approx \frac{u(x+h,y) + u(x-h,y) + u(x,y+h) + u(x,y-h) - 4u(x,y)}{h^2}$$

which leads to a linear system of equations for the approximate values of u at the nodes.