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Dirac delta function

The Dirac “function” δ satisfies

δ(x) = 0 for x 6= 0, and
∫
δ(x)dx = 1.

One can think of δ as the density of a unit mass located at x = 0.

An important property of δ is (for continuous f )∫
δ(x)f (x)dx = f (0), or equivalently,

∫
δ(x− t)f (x)dx = f (t).

One way to make this idea rigorous is to consider δ as a linear functional.
A linear functional is a linear operator sending functions to numbers. For
example, the operation of taking average

Af =
∫ 1

0
f (x)dx,

is a linear functional. The delta functional is simply the operation of
evaluating the function at a point: δt f = f (t).
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Initial value problem for the Poisson equation in 1D

For the problem uxx = f with initial conditions u(0) =α and ux(0) =β, we
derived a candidate solution

u(x) =α+βx+
∫ 1

0
G(x, t)f (t)dt,

where Gxx(x, t) = δ(x− t), and G(0, t) = Gx(0, t) = 0. More explicitly,

G(x, t) =
{

0 for x ≤ t,

x− t for x ≥ t.

So we can write
u(x) =α+βx+

∫ x

0
(x− t)f (t)dt.

Notice that u(0) =α.
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Initial value problem for the Poisson equation in 1D

Recall the Leibniz rule (for g such that g and gx are continuous)

d

dx

b(x)∫
a(x)

g(x, t)dt =
b(x)∫

a(x)

gx(x, t)dt +bx(x)g(x,b(x))−ax(x)g(x,a(x)).

Our proposed solution is

u(x) =α+βx+
∫ x

0
(x− t)f (t)dt.

Differentiating

ux(x) =β+
∫ x

0
f (t)dt +1 · (x−x)f (x) ⇒ ux(0) =β.

Differentiating once more

uxx(x) =
∫ x

0
0 ·dt +1 · f (x) ⇒ uxx = f .
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Boundary value problem for the Poisson equation

For the problem uxx = f with boundary conditions u(0) =α and u(1) =β,
we derived a candidate solution

u(x) =α(1−x)+βx+
∫ 1

0
G(x, t)f (t)dt.

where

G(x, t) =
{

(t −1)x for x ≤ t,

t(x−1) for x ≥ t.

We can write

u(x) =α(1−x)+βx+
∫ x

0
(x−1)t f (t)dt +

∫ 1

x
x(t −1)f (t)dt.

Note that u(0) =α and u(1) =β.
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Boundary value problem for the Poisson equation

Recall the Leibniz rule

d

dx

b(x)∫
a(x)

g(x, t)dt =
b(x)∫

a(x)

gx(x, t)dt +bx(x)g(x,b(x))−ax(x)g(x,a(x)),

and the proposed solution

u(x) =α(1−x)+βx+
∫ x

0
(x−1)t f (t)dt +

∫ 1

x
x(t −1)f (t)dt.

We compute

ux(x) =−α+β+
∫ x

0
t f (t)dt+1 · (x−1)xf (x)+

∫ 1

x
(t −1)f (t)dt−1 ·x(x−1)f (x),

and finally

uxx(x) = 0+1 ·xf (x)−1 · (x−1)f (x) ⇒ uxx = f .
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Electrostatics

Let q and Q be electric charges with locations given by the vectors x ∈R3

and X ∈R3, respectively. Then by Coulomb’s law, the electrostatic force
exerted on q is equal to

F = CQq

|x−X |2 · x−X

|x−X | ,

where C is a constant that depends on the unit system.
If several charges Qi are present at Ri, then by the superposition
principle, the net force acting on q is

F = q
∑

i

CQi

|x−Xi|2
· x−Xi

|x−Xi|
.

It is convenient to identify the electric field generated by the charges Qi

with the vector-valued function

E(x) =∑
i

CQi

|x−Xi|2
· x−Xi

|x−Xi|
.
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Electric field is divergence-free in vacuum

Observe that

∂

∂x1

(|x|2)−3/2
x1 =−3

2

(|x|2)−5/2 ·2x1 ·x1 +
(|x|2)−3/2 = −2x2

1 +x2
2 +x2

3

|x|5

and so

∇· x

|x|3 = ∂

∂x1

(|x|2)−3/2
x1 + ∂

∂x2

(|x|2)−3/2
x2 + ∂

∂x3

(|x|2)−3/2
x3

= −2x2
1+x2

2 +x2
3

|x|5 + −2x2
2+x2

1 +x2
3

|x|5 + −2x2
3+x2

1+x2
2

|x|5 = 0.

Therefore
∇·E = 0, except at Xi.
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Electric potential

Observe also that

∂

∂x1

1

|x| =
∂

∂x1

(|x|2)−1/2 =−1

2

(|x|2)−3/2 ·2x1 =− 1

|x|2 · x1

|x| ,

and so
∇ 1

|x| = − 1

|x|2 · x

|x| .

Define the electric potential

ϕ(x) =∑
i

CQi

|x−Xi|
.

Then
E =−∇ϕ, and ∆ϕ= 0, except at Xi.
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