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Dirac delta function

The Dirac “function” § satisfies
0(x)=0 for x#0, and fﬁ(x)dle.

One can think of § as the density of a unit mass located at x=0.

An important property of § is (for continuous f)

f&(x)f(x)dx:f(O), or equivalently, f(?(x— nfx)dx=f(1).

One way to make this idea rigorous is to consider § as a linear functional.
A linear functional is a linear operator sending functions to numbers. For
example, the operation of taking average

1
Af:f f(x)dx,
0

is a linear functional. The delta functional is simply the operation of
evaluating the function at a point: 6.f=f(¢).
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Initial value problem for the Poisson equation in 1D ¥

For the problem uy, = f with initial conditions 1(0) = a and u,(0) = 8, we
derived a candidate solution

1
u(x) = a+ﬁx+[ G(x, nf(ndt,
0

where Gy (x, 1) =6(x—1), and G(0, 1) = G,(0,£) =0. More explicitly,

for x<t,

x—t for x=t.

{0
Glx, ) =

So we can write

P
u(x) = a+ﬁx+/ (x—-nf(ndt.
0

Notice that u(0) = a.

Math 319 Lecture 4 Jan 11 3/9



Initial value problem for the Poisson equation in 1D ¥

Recall the Leibniz rule (for g such that g and g, are continuous)

d b(x) b(x)
P f glx,ndt= / g(x, ) dt + by(x)g(x, b(x)) — ax(x) g(x, a(x)).
a(x) a(x)

Our proposed solution is

P
u(x) = a+ﬁx+f (x—nf(ndt.
0

Differentiating
X
Uy (x) = ﬁ+f0 fOde+1-(x-xf(x) = u,(0) = B.
Differentiating once more

Uy (X) Zf 0-dt+1-f(x) = U = .
0
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Boundary value problem for the Poisson equation

For the problem u,, = f with boundary conditions u(0) = @ and u(1) = 8,
we derived a candidate solution

1
ux)=a(l-x+ ﬁx+f G(x, nf(ndt.
0
where

(t—1x for x<t,
t(x—1) for x=t.

G(x, 1) :{
We can write
X 1
u(x):a(l—x)+ﬁx+f (x—l)tf(t)dt+f x(t—1Df(ndt.
0 X

Note that u(0) = a and u(1) = g.
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Boundary value problem for the Poisson equation

Recall the Leibniz rule

b(x) b(x)

d

P f glx,dt= f &x(x, 1) dt + by(x)g(x, b(x)) — ax(x)g(x, a(x)),
a(x) a(x)

and the proposed solution

1

P
u(x)za(l—x)+ﬁx+/ (x—l)tf(t)dt+f x(t—-1)f(ndt.
0 X

We compute

X 1
Uy(x) = —a+ﬁ+f tf(de+1- (x— 1)xf(x)+f (t-Df@Odt—1-x(x—1Df (%),
0 X

and finally

Uer(X) =0+ 1-xf(0) —1-(x—1)f (%) = Uyx = f-
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Electrostatics

Let g and Q be electric charges with locations given by the vectors x € R3
and X € R3, respectively. Then by Coulomb’s law, the electrostatic force
exerted on ¢ is equal to

_ CQg x-X
T x-X2 |x-X|’

where C is a constant that depends on the unit system.
If several charges Q; are present at R;, then by the superposition
principle, the net force acting on q is

CQi x-X;
F= :
o XE X

i

It is convenient to identify the electric field generated by the charges Q;
with the vector-valued function

CQi x—-X;
E() = : .
) ;|x—xi|2 x— Xi
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Electric field is divergence-free in vacuum

Observe that

(I ) _3/2 :—g(lez)_5/2-2x1-x1+(|x|2)_3/2: —Zﬁ;§+x§
and so
V-% (I I)3/2 +aixz(|x|2)73/2x2+6%3(|x|2)73/2x3
~ —2x§+x§+x§ 2540+ X 2N
|x|> || ||
Therefore

V-E=0, exceptat Xj.
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Electric potential

Observe also that

01 12 _ -3/2
Elxl 6x1(||) (||)

1 X1
|2 x|

’

and so
1 _ 1 X
IxI1x? |xl
Define the electric potential
CQ;
(x) = .
PO

Then
E=-V¢p, and Ap=0, exceptat X;.
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