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Radial case, half disk

In the radial case, the data and the solution do not depend on φ, so
e.g., the eigenfunction expansion of f reduces to

f (r) =
∞∑

k=1
βk J0(α0,kr),

with the coefficients

βk = 1

π|J1(α0,k)|2
∫ 1

0
f (r)J0(α0,kr)r dr.

Consider the Laplace eigenproblem with the homogeneous Dirichlet
condition on the half disk

{
(r,φ) : 0 < r < 1, 0 <φ<π}

. In the φ-direction
one has the expansion in terms of sin(nφ), with the eigenvalues −n 2.
This immediately leads to the “pre-Bessel” equation

ω′′
n(r)+ 1

r
ω′

n(r)+
(
λ− n 2

r 2

)
ωn(r) = 0,

implying that the eigenfunctions are vn,k(r,φ) = Jn(αn,k)sin(nφ) with the
eigenvalues −α2

n,k, where n = 1,2, . . ..
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Exterior Dirichlet problem for the circle

Let us solve the exterior Dirichlet problem

∆u = 0 in R2 \D, u = g on ∂D.

For r > 1, we can write
u(r,φ) = ξ0(r)+

∞∑
n=1

(
ξn(r)cosnφ+ξ−n(r)sinnφ

)
,

and
g(φ) = γ0 +

∞∑
n=1

(
γn cosnφ+γ−n sinnφ

)
.

We must require ξn(1) = γn for all n ∈Z. The ODE for ξn is

(ξn)rr + 1

r
(ξn)r − n 2

r 2 ξn = 0,

whose only solutions that do not blow up at ∞ are ξn(r) = γnr−n, giving

u(r,φ) = γ0 +
∞∑

n=1
r−n (

γn cosnφ+γ−n sinnφ
)= ∫ π

−π
g(φ−θ)Pr(θ)dθ,

where Pr(x) = 1
2π · r 2−1

r 2−2r cosx+1
is the Poisson kernel for the disk exterior.
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Solid cylinder

Consider the eigenvalue problem

∆u =λu,

in the solid cylinder D× (0,π), with the homogeneous Dirichlet boundary
condition. Letting ∆2 be the 2-dimensional Laplacian, and writing
u(r,φ,z) = V (r,φ)Z(z) in the cylindrical coordinates, we have

∆u = Z∆2V +VZ ′′ =λVZ .

We divide by VZ and rearrange to get
∆2V

V
+ Z ′′

Z
=λ ⇒ λ− ∆2V

V
= Z ′′

Z
=−m2,

for any positive integer m, with Z(z) = sin(mz). Then V must satisfy

∆2V = (λ+m2)V ,

on the unit disk D, with homogeneous Dirichlet condition. This means

λ+m2 =−α2
n,k ⇒ λn,k,m =−α2

n,k −m2,

where αn,k are the positive zeroes of Jn.
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Spherically symmetric eigenproblem

The spherically symmetric eigenproblem in the unit ball with the
homogeneous Dirichlet condition is

∆u = urr + 2

r
ur =λu, u(1) = 0.

This can be solved by observing

(ru)rr = rurr +2ur ,

so that the eigenproblem can be written as

(ru)rr =λru.

Its only bounded solutions are multiples of

u(r) = sin(πnr)

r
.
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