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Laplace eigenfunction expansion

We found that the Laplace eigenfunctions on the unit disk with the
homogeneous Dirichlet boundary condition are

vn,k(r,φ) = Jn
(
αn,kr

)
cosnφ, and v−n,k(r,φ) = Jn

(
αn,kr

)
sinnφ,

with the corresponding eigenvalues

λn,k =λ−n,k =−α2
n,k, for n ≥ 0, k ≥ 1,

where αn,1,αn,2, etc, are the positive zeroes of the Bessel function Jn.
So we have the eigenpairs

{
vn,k,λn,k

}
with n ∈Z and k ∈N.

We can write any function f with ‖f ‖ <∞, defined on D as

f = ∑
n∈Z

∑
k∈N

βn,kvn,k.

The vn,k are pairwise orthogonal w.r.t. the L2-inner product on D, so

βn,k

∫
D
|vn,k|2 =

∫
D

fvn,k.
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Orthogonality of the eigenfunctions

It is a general fact that eigenfunctions corresponding to different
eigenvalues are pairwise orthogonal. Suppose, on some domain Ω,

∆u =λu, and ∆v =µv,

with the homogeneous Dirichlet boundary condition. Multiply the first
equation by v and integrate to find

λ

∫
Ω

vu =
∫
Ω

v∆u =
∫
∂Ω

v∂nu−
∫
Ω
∇v ·∇u =−

∫
Ω
∇v ·∇u .

Similarly, we can manipulate the second equation by multiplying it by u.
Then taking the difference of the resulting two expressions, we get

(λ−µ)
∫
Ω

vu = 0 ⇒
∫
Ω

vu = 0 if λ 6=µ,

which is the L2-orthogonality of u and v. The same argument works for
the homogeneous Neumann and Robin boundary conditions.
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Normalizing constants

To compute the coefficients of the eigenfunction expansions on the disk,
we need the values∫
D
|vn,k|2 =

∫ 1

0

∫ π

−π
J 2

n (αn,kr)cos2(nφ)r dr dφ=π(
1+δn,0

)∫ 1

0
J 2

n (αn,kr)r dr.

Although the intermediate step (with cosine) is only valid for the case
n ≥ 0, the result is true in general. To compute the integral, we start with
the Bessel equation

x 2y ′′+xy ′+ (x 2 −n 2)y = 0,

and multiply it by 2y ′ to arrive at(
(xy ′)2 + (x 2 −n 2)y 2)′ = 2xy 2.

This implies∫ 1

0
J 2

n (αn,kr)r dr = 1

α2
n,k

∫ αn,k

0
J 2

n (x)x dx = |J ′n(αn,k)|2
2

= |Jn+1(αn,k)|2
2

.
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Problems on the disk

Let f and g be functions defined on D. Then with homogeneous Dirichlet
boundary conditions, consider

The Poisson problem ∆u = f

The heat equation ut =∆u, with u(r,φ,0) = f (r,φ)

Wave utt =∆u, with u(r,φ,0) = f (r,φ) and ut (r,φ,0) = g(r,φ)

We can write
u(r,φ, t) = ∑

n∈Z,k∈N
ξnk(t)vnk(r,φ), f = ∑

n∈Z,k∈N
βnkvnk, g = ∑

n∈Z,k∈N
γnkvnk,

with u (and so ξnk) not depending on t for the Poisson case. Then
for Poisson ξnk =−βnk

/
α2

nk

for heat ξnk(t) = e−α
2
nktβnk

for wave ξnk(t) =βnk cosαnkt + γnk
αnk

sinαnkt
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