Lecture 30: Bessel functions and the Laplace eigenfunctions on the disk

Gantumur Tsogtgerel

Math 319: Introduction to PDE McGill University, Montréal

Monday March 21, 2011

Properties of the Bessel functions

Recall
$$J_n(x) = \sum_{q=0}^{\infty} \frac{(-1)^q}{q!(n+q)!} \left(\frac{x}{2}\right)^{n+2q}$$
.

- $J_n(-x) = (-1)^n J_n(x)$
- $J_n(0) = ... = J_n^{(n-1)}(0) = 0$, and no positive zeroes of J_n are repeated
- $(x^n J_n(x))' = x^n J_{n-1}(x)$, and $(x^{-n} J_n(x))' = -x^{-n} J_{n+1}(x)$
- The zeroes of J_n and J_{n+1} are interlaced, and no two J_n and J_k have common zeroes
- $J_n(x) = \sqrt{\frac{2}{\pi x}} \cos\left(x \frac{\pi}{4} \frac{\pi n}{2}\right) + O\left(x^{-3/2}\right)$ for large x

Truncated power series and asymptotic formula

green: J_n , greenish yellow: asymptotic formula, magenta: power series with $q \le 4$, blue: power series with $q \le 5$

Mart 319 Lecture 30 Mar 21 3 / 7

Bessel zeroes

Math 319 Lecture 30 Mar 21

Laplace eigenfunctions on the disk

Recall that we started with the Laplace eigenproblem on the unit disk with the homogeneous Dirichlet boundary condition. We derived that if

$$\nu(r,\phi) = \omega_0(r) + \sum_{n=1}^{\infty} \left(\omega_n(r) \cos n\phi + \omega_{-n}(r) \sin n\phi \right),$$

is an eigenfunction with eigenvalue λ , then the function $y(x) = \omega_n(x/\alpha)$ with $\alpha = \sqrt{-\lambda}$, must satisfy the Bessel equation

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

We need $\omega_n(0)$ finite, so

$$\omega_n(r) = J_n(\alpha r)$$
.

Now the boundary condition $\omega_n(1)=0$ requires $J_n(\alpha)=0$, i.e., α must be a zero of J_n . Denoting the positive zeroes of J_n by $\alpha_{n,1},\alpha_{n,2}$, etc, we have

$$v_{n,k}(r,\phi) = J_n(\alpha_{n,k}r)\cos n\phi$$
, and $v_{-n,k}(r,\phi) = J_n(\alpha_{n,k}r)\sin n\phi$,

are the **eigenfunctions** with the **eigenvalue** $-\alpha_{n,k}^2$, for $n \ge 0$ and $k \ge 1$.

Mart 319 Lecture 30 Mar 21

Radial components of the eigenfunctions

 $J_0(\alpha_{0,k}x)$ couples to constants

 $J_2(\alpha_{2,k}x)$ couples to $\sin 2\phi$, $\cos 2\phi$

 $J_1(\alpha_{1,k}x)$ couples to $\sin\phi$, $\cos\phi$

 $J_3(\alpha_{3,k}x)$ couples to $\sin 3\phi$, $\cos 3\phi$

Mart 319 Lecture 30 Mar 21 6

Laplace eigenfunctions on the disk

Math 319 Lecture 30 Mar 21

Laplace eigenfunctions on the disk

7 / 7

Math 319 Lecture 30 Mar 21