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Properties of the Bessel functions

X (=14 x\n+2q

Recall ]n(x)_ngq!(n+q)! (2) )

0 Ju(=x)=(=1)"J,(x)

e J,0)=...= ,(l”_l) (0) =0, and no positive zeroes of J, are repeated

o (x"n(0)) = x" 10, and (x7n(0) = X1 ()

@ The zeroes of J, and J,41 are interlaced, and no two J, and Ji have
common zeroes

° J,(x)= \/%xcos (x-%-21)+ O(x73/2) for large x
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green: Jyu, : asymptotic formula, magenta: power series with g<4, blue:
power series with g<5
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Bessel zeroes
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Laplace eigenfunctions on the disk

Recall that we started with the Laplace eigenproblem on the unit disk
with the homogeneous Dirichlet boundary condition. We derived that if

v(r, ) =wo(N+ Y (wn(r) cosng + w_,(r) sinng),
n=1

is an eigenfunction with eigenvalue A, then the function y(x) = w,(x/a)
with @ = v —A, must satisfy the Bessel equation

x2y" +xy'+ (x> = n?)y=0.

We need w,(0) finite, so

wpn(r) =Jplan.
Now the boundary condition w,(1) =0 requires J,(a) =0, i.e., @ must be
a zero of J,,. Denoting the positive zeroes of J, by ap1,a,2, etc, we have

Un k(1) = Jn(@pir)cosng, and  v_y, k(r,$) = Jn (@nir) sin ng,

are the eigenfunctions with the eigenvalue —afl o forn=0and k>1.
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J2(ay ;%) couples to sin2¢, cos2¢p J3(az i x) couples to sin3¢, cos3¢




Laplace eigenfunctions on the disk
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Laplace eigenfunctions on the disk
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