
Lecture 3: Initial and boundary value problems in
1 dimension

Gantumur Tsogtgerel
Assistant professor of Mathematics

Math 319: Introduction to PDEs
McGill University, Montréal

January 10, 2011



Euler’s finite difference method

We have ux(x) ≈ u(x+h)−u(x)

h
for small h, if e.g. u ∈ C1(R). So ux = f is

something like
yi+1 −yi = bi+1,

where yi ≈ u(ih) and bi+1 ≈ hf (ih). This can be solved as

yn = yn−1 +bn = yn−2 +bn−1 +bn = . . . = y0 +b1 + . . .+bn.

Let us rewrite the equation as
Ay = b,

with

y =


y0

y1
...

yn

 , b =


b1

b2
...

bn

 , A =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
...

0 0 0 . . . 1


n×(n+1)

.

The dimension of KerA is 1.
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Discrete Green’s function

So if we give y0 =α, then the solution is unique. This means we consider
the equation Ãy = b̃ where

Ã =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
...

0 0 0 . . . 1


(n+1)×(n+1)

and b̃ =


α

b1

b2
...

bn

 .

In particular Ã :Rn+1 →Rn+1 is an invertible matrix, with the inverse

G := Ã−1 =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

. . .
...

1 1 1 . . . 1

 .
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Discrete Green’s function

The rows of G correspond to how particular yi depends on bk (and α):

yi = 1 ·α+1 ·b1 + . . .+1 ·bi +0 ·bi+1 + . . .+0 ·bn.

The k-th column of G corresponds to the solution of the problem Ãy = ek

where ek = [0, . . . ,0,1,0 . . . ,0] with the 1 at k-th place. Let G0,G1, . . . be
the columns of G. Then we have

y =αG0 +b1G1 + . . .+bnGn.

In other words,
G0 is the solution when α= 1, b1 = . . . = bn = 0,
G1 is the solution when α= 0, b1 = 1, and b2 = . . . = bn = 0, etc.

To know a linear system, it is enough to know the responses of the
system for a “few” well-chosen set of inputs.
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Discrete Green’s function

What if yn =β is given, and we want to find y0, . . . ,yn−1? Then we need
to “integrate backwards”

yi = yi+1 −bi+1 = yi+2 −bi+1 −bi+2 = . . . = yn −bi+1 − . . .−bn.

Now the problem is ˜̃Ay = ˜̃b where

˜̃A =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 1


(n+1)×(n+1)

and ˜̃b =


b1

b2
...

bn

β

 ,

and we have

˜̃A−1 =


−1 . . . −1 −1 1
...

. . .
...

0 . . . −1 −1 1
0 . . . 0 −1 1
0 . . . 0 0 1

 .
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Green’s function

The analogue of the matrix inversion for ux = f with u(0) =α is

u(x) =α+
∫ ∞

0
G(x, t)f (t)dt,

where

G(x, t) =
{

1 if t ≤ x

0 otherwise

is called Green’s function for the problem ux = f on (0,∞) with the
initial condition at x = 0.
The function Gt (x) = G(x, t) is the response to the Dirac function δ(x− t)
centered at t.

δ(x− t) = 0 for x 6= t, and
∫
δ(x− t)f (x)dx = f (t).
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Green’s function

For the problem ux = f on (−∞,0) with the “terminal” condition at x = 0,
we have

u(x) = u(0)−
∫ 0

x
f (t)dt = u(0)+

∫ 0

−∞
G(x, t)f (t)dt,

so its Green’s function would be

G(x, t) =
{
−1 if t ≥ x

0 otherwise
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Laplace operator

The Laplace operator is ∆u = uxx in 1D, ∆u = uxx +uyy in 2D etc. The
two basic equations involving this operator are the Laplace equation

∆u = 0,

whose solutions are called harmonic functions, and the more general
Poisson equation

∆u = f .
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Poisson equation in 1D

Consider uxx = f on the interval (0,1) subject to the initial conditions
u(0) =α and ux(0) =β.

For α= 1, β= 0, and f = 0, the solution is u(x) = 1

For α= 0, β= 1, and f = 0, the solution is u(x) = x

For α= 0, β= 0, and f (x) = δ(x− t), let u(x) = G(x, t) be the solution
Then in the general case we anticipate

u(x) =α+βx+
∫ 1

0
G(x, t)f (t)dt.

We have Gxx(x, t) = 0 unless x = t, so G(x, t) is linear in x except possibly
at x = t. This gives G(x, t) = 0 for x ≤ t.
On the other hand, we have

1 =
∫ t+ε

t−ε
Gxx(x, t)dx = Gx(t +ε)−Gx(t −ε) = Gx(t +ε),

so G(x, t) = x− t for x ≥ t.
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Poisson equation in 1D

Consider now uxx = f on the interval (0,1) subject to the boundary
conditions u(0) =α and u(1) =β.

For α= 1, β= 0, and f = 0, the solution is u(x) = 1−x

For α= 0, β= 1, and f = 0, the solution is u(x) = x

For α= 0, β= 0, and f (x) = δ(x− t), let u(x) = G(x, t) be the solution
So we anticipate

u(x) =α(1−x)+βx+
∫ 1

0
G(x, t)f (t)dt.

G(x, t) is linear in x except possibly at x = t. In the vicinity of x = t:

1 =
∫ t+ε

t−ε
Gxx(x, t)dx = Gx(t +ε)−Gx(t −ε)

So G(x, t) = kx for x ≤ t, and G(x, t) = (k+1)x− t for x ≥ t. From G(1, t) = 0
we get k = t −1. The final result is

G(x, t) =
{

(t −1)x for x ≤ t

t(x−1) for x ≥ t
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