Lecture 3: Initial and boundary value problems in 1 dimension

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

January 10, 2011

Euler's finite difference method

We have $u_x(x) \approx \frac{u(x+h)-u(x)}{h}$ for small h, if e.g. $u \in C^1(\mathbb{R})$. So $u_x = f$ is something like

$$y_{i+1} - y_i = b_{i+1}$$
,

where $y_i \approx u(ih)$ and $b_{i+1} \approx hf(ih)$. This can be solved as

$$y_n = y_{n-1} + b_n = y_{n-2} + b_{n-1} + b_n = \dots = y_0 + b_1 + \dots + b_n.$$

Let us rewrite the equation as

with

$$Av = b$$

$$y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}, \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \qquad A = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}_{n \times (n+1)}.$$

The dimension of Ker A is 1.

Discrete Green's function

3 / 10

So if we give $y_0 = \alpha$, then the solution is unique. This means we consider the equation $\tilde{A}y = \tilde{b}$ where

$$\tilde{A} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}_{(n+1)\times(n+1)} \quad \text{and} \quad \tilde{b} = \begin{pmatrix} \alpha \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

In particular $\tilde{A}: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is an invertible matrix, with the inverse

$$G := \tilde{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}.$$

Discrete Green's function

The rows of G correspond to how particular y_i depends on b_k (and α):

$$y_i = 1 \cdot \alpha + 1 \cdot b_1 + \ldots + 1 \cdot b_i + 0 \cdot b_{i+1} + \ldots + 0 \cdot b_n.$$

The k-th column of G corresponds to the solution of the problem $\tilde{A}y = e_k$ where $e_k = [0, \dots, 0, 1, 0, \dots, 0]$ with the 1 at k-th place. Let G_0, G_1, \dots be the columns of G. Then we have

$$y = \alpha G_0 + b_1 G_1 + \ldots + b_n G_n.$$

In other words,

- G_0 is the solution when $\alpha = 1$, $b_1 = ... = b_n = 0$,
- G_1 is the solution when $\alpha = 0$, $b_1 = 1$, and $b_2 = ... = b_n = 0$, etc.

To know a linear system, it is enough to know the responses of the system for a "few" well-chosen set of inputs.

Discrete Green's function

What if $y_n = \beta$ is given, and we want to find $y_0, ..., y_{n-1}$? Then we need to "integrate backwards"

$$y_i = y_{i+1} - b_{i+1} = y_{i+2} - b_{i+1} - b_{i+2} = \dots = y_n - b_{i+1} - \dots - b_n$$
.

Now the problem is $\tilde{\tilde{A}}y = \tilde{\tilde{b}}$ where

$$\tilde{A} = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}_{(n+1)\times(n+1)} \quad \text{and} \quad \tilde{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \beta \end{pmatrix},$$

and we have

$$\tilde{\tilde{A}}^{-1} = \begin{pmatrix} -1 & \dots & -1 & -1 & 1 \\ \vdots & \ddots & & & \vdots \\ 0 & \dots & -1 & -1 & 1 \\ 0 & \dots & 0 & -1 & 1 \\ 0 & \dots & 0 & 0 & 1 \end{pmatrix}.$$

Green's function

6 / 10

The analogue of the matrix inversion for $u_x = f$ with $u(0) = \alpha$ is

$$u(x) = \alpha + \int_0^\infty G(x, t) f(t) dt,$$

where

$$G(x, t) = \begin{cases} 1 & \text{if} \quad t \le x \\ 0 & \text{otherwise} \end{cases}$$

is called **Green's function** for the problem $u_x = f$ on $(0, \infty)$ with the initial condition at x = 0.

The function $G_t(x) = G(x,t)$ is the response to the Dirac function $\delta(x-t)$ centered at t.

$$\delta(x-t) = 0$$
 for $x \neq t$, and $\int \delta(x-t)f(x)dx = f(t)$.

Green's function

For the problem $u_x = f$ on $(-\infty, 0)$ with the "terminal" condition at x = 0, we have

$$u(x) = u(0) - \int_{x}^{0} f(t)dt = u(0) + \int_{-\infty}^{0} G(x, t)f(t)dt,$$

so its Green's function would be

$$G(x,t) = \begin{cases} -1 & \text{if} \quad t \ge x \\ 0 & \text{otherwise} \end{cases}$$

Laplace operator

The **Laplace operator** is $\Delta u = u_{xx}$ in 1D, $\Delta u = u_{xx} + u_{yy}$ in 2D etc. The two basic equations involving this operator are the **Laplace equation**

$$\Delta u = 0$$
,

whose solutions are called **harmonic functions**, and the more general **Poisson equation**

$$\Delta u = f$$
.

Poisson equation in 1D

9 / 10

Consider $u_{xx} = f$ on the interval (0,1) subject to the **initial conditions** $u(0) = \alpha$ and $u_x(0) = \beta$.

- For $\alpha = 1$, $\beta = 0$, and f = 0, the solution is u(x) = 1
- For $\alpha = 0$, $\beta = 1$, and f = 0, the solution is u(x) = x
- For $\alpha = 0$, $\beta = 0$, and $f(x) = \delta(x t)$, let u(x) = G(x, t) be the solution

Then in the general case we anticipate

$$u(x) = \alpha + \beta x + \int_0^1 G(x, t) f(t) dt.$$

We have $G_{xx}(x,t) = 0$ unless x = t, so G(x,t) is linear in x except possibly at x = t. This gives G(x,t) = 0 for $x \le t$. On the other hand, we have

$$1 = \int_{t-\varepsilon}^{t+\varepsilon} G_{xx}(x,t) dx = G_x(t+\varepsilon) - G_x(t-\varepsilon) = G_x(t+\varepsilon),$$

so
$$G(x, t) = x - t$$
 for $x \ge t$.

Poisson equation in 1D

Consider now $u_{xx} = f$ on the interval (0,1) subject to the **boundary** conditions $u(0) = \alpha$ and $u(1) = \beta$.

- For $\alpha = 1$, $\beta = 0$, and f = 0, the solution is u(x) = 1 x
- For $\alpha = 0$, $\beta = 1$, and f = 0, the solution is u(x) = x
- For $\alpha = 0$, $\beta = 0$, and $f(x) = \delta(x t)$, let u(x) = G(x, t) be the solution

So we anticipate

$$u(x) = \alpha(1-x) + \beta x + \int_0^1 G(x,t)f(t)dt.$$

G(x, t) is linear in x except possibly at x = t. In the vicinity of x = t:

$$1 = \int_{t-\varepsilon}^{t+\varepsilon} G_{xx}(x,t) dx = G_x(t+\varepsilon) - G_x(t-\varepsilon)$$

So G(x,t) = kx for $x \le t$, and G(x,t) = (k+1)x - t for $x \ge t$. From G(1,t) = 0 we get k = t - 1. The final result is

$$G(x,t) = \begin{cases} (t-1)x & \text{for } x \le t \\ t(x-1) & \text{for } x \ge t \end{cases}$$