Lecture 29: Laplace eigenproblem on the disk and

the Bessel functions

Gantumur Tsogtgerel

Math 319: Introduction to PDE
McGill University, Montréal

Thursday March 17, 2011



Laplace eigenproblem on the disk

Let us solve the eigenproblem
Av=Av on D,

with the homogeneous Dirichlet boundary condition. Considering v(r, ¢)
for any fixed r as a function of ¢, we can write

o0
u(r, ) =wo(N+ Y (wn(r) cos ng + w_p,(r) sinng),
n=1
with wy,(1) =0 for all ne Z. This leads to

2

1 n
(W) rr+ = (Wn)r— —5wn= A0y
r r2

With the substitutions x=ar and y(x) = w,(x/a) where a = V-1, we get
22y +xy' + (x* —n?y=o0.

This is called the Bessel equation.
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Bessel equation

We can solve the Bessel equation
x%y" +xy' + (x* - n?)y =0,
by power series
>k
yx) =) apx”.
k=0
Upon substitution, the equation reads

Y ktk-Darx*+ Y karx*+ Y apox* - Y nPax* =o.
k=0 k=0 k=2 k=0

We have
e for k=0: n%ay=0, so ay=0 unless n=0
e for k=1: a;—na; =0, so a; =0 unless n=1
e for k=2: (k*-n®)ay+ai_,=0
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Bessel functions

Aj—2
k2 —ne
k<n, and for k=n+1,n+3, etc. The only possibly nonzero coefficients
are ay, Ani2, Ania, €tc. We calculate

We have a; = —

for k=2 and k# n. This gives a; =0 for all

—Ani2(g-1) (=D%ay (-1)7n'ay

2qg-2(n+q)  21g!-29(n+@(n+q-1)---(n+1)  224gi(n+q)!’

an+2q =

Finally, a solution of the Bessel equation is

© EDnlan g o on o (EDT 0 xyne2q
=y o T yn2q (57
Jn) q;,zzqq!(mq)!x " “”‘;)q!(mq)!(z)

where it is traditional to take a, = ﬁ This is the only solution of the

Bessel equation having a finite value at 0 (i.e., [J,(0)| <o0o). The function
J,, is called the Bessel function of the first kind, of order n. The
convergence radius of the above series is 0o, so J, is an entire function.
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Properties of the Bessel functions

@ Ju(=x)=(=1)"Ju(x)

e J,0)=...= ,(l”_l) (0) =0, and no positive zeroes of J, are repeated

o (x"/n(x)" =x"u 10, and (x7,(0)" = =X i1 (%)

@ The zeroes of J, and J,+1 are interlaced, and no two J, and Ji have
common zeroes

® Ju(x) =/ 2 cos(x—Z —2) + O(x32) for large x

Jo. i, and
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