

Lecture 29: Laplace eigenproblem on the disk and the Bessel functions

Gantumur Tsogtgerel

Math 319: Introduction to PDE McGill University, Montréal

Thursday March 17, 2011

Let us solve the eigenproblem

$$\Delta v = \lambda v \qquad \text{on} \quad \mathbb{D},$$

with the homogeneous Dirichlet boundary condition. Considering $v(r,\phi)$ for any fixed r as a function of ϕ , we can write

$$v(r,\phi) = \omega_0(r) + \sum_{n=1}^{\infty} \left(\omega_n(r) \cos n\phi + \omega_{-n}(r) \sin n\phi \right),$$

with $\omega_n(1) = 0$ for all $n \in \mathbb{Z}$. This leads to

$$(\omega_n)_{rr} + \frac{1}{r}(\omega_n)_r - \frac{n^2}{r^2}\omega_n = \lambda\omega_n.$$

With the substitutions $x = \alpha r$ and $y(x) = \omega_n(x/\alpha)$ where $\alpha = \sqrt{-\lambda}$, we get

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

This is called the **Bessel equation**.

We can solve the Bessel equation

$$x^2y'' + xy' + (x^2 - n^2)y = 0,$$

by power series

$$y(x) = \sum_{k=0}^{\infty} a_k x^k.$$

Upon substitution, the equation reads

$$\sum_{k=0}^{\infty} k(k-1)a_k x^k + \sum_{k=0}^{\infty} ka_k x^k + \sum_{k=2}^{\infty} a_{k-2} x^k - \sum_{k=0}^{\infty} n^2 a_k x^k = 0.$$

We have

• for
$$k = 0$$
: $n^2 a_0 = 0$, so $a_0 = 0$ unless $n = 0$

• for
$$k = 1$$
: $a_1 - n^2 a_1 = 0$, so $a_1 = 0$ unless $n = 1$

• for
$$k \ge 2$$
: $(k^2 - n^2)a_k + a_{k-2} = 0$

Bessel functions

We have $a_k = -\frac{a_{k-2}}{k^2 - n^2}$ for $k \ge 2$ and $k \ne n$. This gives $a_k = 0$ for all k < n, and for k = n+1, n+3, etc. The only possibly nonzero coefficients are a_n, a_{n+2}, a_{n+4} , etc. We calculate

$$a_{n+2q} = \frac{-a_{n+2(q-1)}}{2q \cdot 2(n+q)} = \frac{(-1)^q a_n}{2^q q! \cdot 2^q (n+q)(n+q-1)\cdots(n+1)} = \frac{(-1)^q n! a_n}{2^{2q} q! (n+q)!}$$

Finally, a solution of the Bessel equation is

$$J_n(x) = \sum_{q=0}^{\infty} \frac{(-1)^q n! a_n}{2^{2q} q! (n+q)!} x^{n+2q} = n! 2^n a_n \sum_{q=0}^{\infty} \frac{(-1)^q}{q! (n+q)!} \left(\frac{x}{2}\right)^{n+2q},$$

where it is traditional to take $a_n = \frac{1}{n!2^n}$. This is the *only* solution of the Bessel equation having a finite value at 0 (i.e., $|J_n(0)| < \infty$). The function J_n is called the **Bessel function** of the first kind, of order *n*. The convergence radius of the above series is ∞ , so J_n is an *entire function*.

• $J_n(-x) = (-1)^n J_n(x)$

•
$$J_n(0) = \ldots = J_n^{(n-1)}(0) = 0$$
, and no positive zeroes of J_n are repeated

- $(x^n J_n(x))' = x^n J_{n-1}(x)$, and $(x^{-n} J_n(x))' = -x^{-n} J_{n+1}(x)$
- The zeroes of J_n and J_{n+1} are interlaced, and no two J_n and J_k have common zeroes

•
$$J_n(x) = \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4} - \frac{\pi n}{2}\right) + O\left(x^{-3/2}\right)$$
 for large x

