Lecture 24: Neumann boundary conditions and Fourier cosine series

Gantumur Tsogtgerel

Math 319: Introduction to PDE McGill University, Montréal

Monday March 7, 2011

Cosine series

Consider the Laplace eigenproblem on interval (0,1) with the **homogeneous Neumann** boundary conditions:

$$v'' = \lambda v, \qquad v'(0) = v'(1) = 0.$$

The eigenfunctions and eigenvalues are found to be

$$\nu_k(x) = \cos(\pi kx), \qquad \lambda_k = -\pi^2 k^2, \qquad k = 0, 1, \dots$$

With respect to the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx,$$

the cosines $\{v_k\}$ are orthogonal:

$$\langle v_j, v_k \rangle = \int_0^1 \cos(\pi j x) \cos(\pi k x) dx = \frac{1 + \delta_{k0}}{2} \delta_{jk},$$

and they form a basis for the set of all functions f with $\|f\|^2 = \langle f, f \rangle < \infty$.

Heat equation with Neumann boundary conditions

Consider the initial-boundary value problem on (0,1)

$$u_t = \Delta u$$
, $u_x(0, t) = u_x(1, t) = 0$, $u(x, 0) = f(x)$,

where $\Delta u = u_{xx}$. Suppose that u and f are written in terms of the **cosine** basis $\{v_k\}$ as

$$u(x,t) = \sum_{k=0}^{\infty} \xi_k(t) \nu_k(x), \qquad f = \sum_{k=0}^{\infty} \beta_k \nu_k.$$

Then we have

$$u_t = \sum_{k=0}^{\infty} (\xi_k)_t v_k, \quad \Delta u = \sum_{k=0}^{\infty} \xi_k \Delta v_k = \sum_{k=0}^{\infty} \xi_k (-\pi^2 k^2) v_k \quad \Rightarrow \quad \xi_k(t) = \beta_k e^{-\pi^2 k^2 t},$$

so

$$u(x,t) = \sum_{k=0}^{\infty} e^{-\pi^2 k^2 t} \beta_k \cos(\pi kx).$$

The essential difference to the Dirichlet case here is that there is a mode (k=0) that **does not decay**.

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

Coefficients of u(x,0)

u(x,0)

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

Coefficients of u(x, 0.1)

u(x, 0.1)

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

Coefficients of u(x, 0.2)

u(x, 0.2)

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

u(x, 0.3)

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

Math 319 Lecture 24 Mar 7

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

Math 319 Lecture 24 Mar 7

Heat equation with initial condition $f(x) = e^{-100(x-1/2)^2}$.

Math 319 Lecture 24 Mar 7

Wave equation with Neumann boundary conditions

Consider the initial-boundary value problem on (0,1)

$$u_{tt} = \Delta u$$
, $u_x(0, t) = u_x(1, t) = 0$, $u(x, 0) = f(x)$, $u_t(x, 0) = g(x)$.

Suppose

$$u(x,t) = \sum_{k=0}^{\infty} \xi_k(t) \nu_k(x), \qquad f = \sum_{k=0}^{\infty} \beta_k \nu_k, \qquad g = \sum_{k=0}^{\infty} \gamma_k \nu_k.$$

Then we have

$$(\xi_k)_{tt} = -\pi^2 k^2 \xi_k, \qquad \Rightarrow \qquad \xi_k(t) = \beta_k \cos(\pi kt) + \frac{\gamma_k}{k} \sin(\pi kt),$$

SO

$$u(x,t) = \beta_0 + \gamma_0 t + \sum_{k=1}^{\infty} \left(\beta_k \cos(\pi kt) + \frac{\gamma_k}{k} \sin(\pi kt) \right) \cos(\pi kx).$$

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x,0)

u(x,0)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.1)

u(x, 0.1)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.2)

u(x, 0.2)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.3)

u(x, 0.3)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.4)

u(x, 0.4)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.5)

u(x, 0.5)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.6)

u(x, 0.6)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.7)

u(x, 0.7)

Wave equation with initial conditions $f(x) = e^{-100(x-1/2)^2}$ and $g \equiv 0$.

Coefficients of u(x, 0.8)

u(x, 0.8)

