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What does solving a problem mean?

What is a problem? We need
Set D, that represents all possible data in the problem
Set S, that represents all possible solutions
Relation R(f ,u) ∈ {0, . . .}, defined for f ∈ D and u ∈ S

Now the problem is: Given f ∈ D, find u ∈ S such that R(f ,u) = 0.

Example: x2 −a = 0, with a as data, and x as the supposed solution.
If we put S =R and D =R, solution does not always exist
If S =C and D =C, there is always a solution
In most cases we cannot compute the solution exactly
But we have a very good idea about the solution(s)
We can compute the solution approximately with any given accuracy

Problem solved: Add the gadget
p

a to our bag of tools
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Polynomial equations

Consider the equation

a0 +a1x+a2x2 + . . .+anxn = 0,

where a0, . . . ,an are data, and x is the solution.

Case n = 2 is solved by x = −a1±
√

a2
1−4a0a2

2a2
(2000BC ∼ 16th century)

n = 3 can be solved by using 3
p

a (Ferro, Tartaglia, Cardano ∼1540)
n = 4 can be solved by using 4

p
a (Ferrari ∼1540)

For n ≥ 5 no general formula (Abel-Ruffini 1824, Galois 1832)
Fundamental theorem: there exist n solutions (Argand 1806)
Many analytic results, bounds etc.
We can approximately compute the roots with any given accuracy

Satisfactorily solved.
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Differentiation and integration

Differentiation: Given f ∈ D, find u ∈ S such that u− f ′ = 0.

Take D and S to be the set of elementary functions, i.e., functions that
can be formed using a finite combination of constants, arithmetic
operations, radicals, exponential, logarithm, and composition.

The derivative of any given elementary function can be
computed in a finite number of steps.

Integration: Given f ∈ D, find u ∈ S such that u′− f = 0.
There exist elementary functions whose integral is not
elementary.

Examples:
f (x) = e−x 2 (erf), f (x) = 1/logx (Li), f (x) = sinx/x (Si)
f (x) = 1/

p
P(x), where P is a polynomial of degree ≥ 3 with no

repeated roots (elliptic integrals)
One can enrich D = S by adding more functions to it, but there will
always be lots of functions that cannot be integrated within the set.
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Differential equations

Obviously there is no hope of solving DEs in elementary terms
Even accepting solutions involving integrals (like d’Alambert’s and
Poisson’s formulas) does not help. There would be tons of DEs that
cannot be solved.

So in general, we resort to qualitative understanding, complemented by
the development of good computational algorithms. In retrospect, any
method that addresses none of these two is of limited importance.

Qualitative understanding can be gained from special solutions,
numerical or physical experiments, and powerful analytic methods
Qualitative understanding is necessary for developing and validating
computational methods
Good computational methods clearly add to qualitative
understanding
Representing the solution as rapidly converging series is very useful
for both understanding and computation
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Well- and ill-posedness

The problem R(f ,u) = 0 of finding u ∈ S for given f ∈ D is called
well-posed if

For any f ∈ D there exists a unique solution u ∈ S,
Varying f a bit results in a small variation of u.

Meta-problem: Find “reasonable” sets D and S such that the
problem R(f ,u) = 0 with f ∈ D and u ∈ S is well-posed, and that
hopefully u can be computed efficiently.

In general, one has to extend the definition of R to bigger sets D and S
than the original ones.

Some problems are inherently ill-posed, i.e., not well-posed.
Ill-posed problems should be replaced by well-posed ones if possible,
but sometimes one is forced to “solve” ill-posed problems.
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Backward heat equation is ill-posed

Consider the backward heat equation

ut =−∆u, u(0, t) = u(π, t) = 0, u(x,0) = f (x).

Suppose that u and f are written in terms of the sine basis {vj} as

u(x, t) =
∞∑

j=1
ξj(t)vj(x), f =

∞∑
j=1

βjvj.

Then we have

ut =
∞∑

j=1
(ξj)t vj, ∆u =

∞∑
j=1

ξj∆vj =
∞∑

j=1
ξj(−j 2)vj ⇒ ξj(t) =βje

+j 2t ,

so
u(x, t) =

∞∑
j=1

e+j 2tβj sin( jx).

Note that the higher modes grow with unbounded rate.

Math 319 Lecture 22 Mar 1 7 / 8



Elliptic initial value problems are ill-posed

Consider the Laplace initial value problem

uxx +utt = 0, u(0, t) = u(π, t) = 0, u(x,0) = f (x), ut (x,0) = g(x).

Suppose

u(x, t) =
∞∑

j=1
ξj(t)vj(x), f =

∞∑
j=1

βjvj, g =
∞∑

j=1
γjvj.

Then we have

(ξj)tt − j 2ξj = 0, ⇒ ξj(y) =βj cosh( jy)+ γj

j
sinh( jy).

Note that the higher modes grow with unbounded rate.

Also, inverse problems are usually ill-posed.
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