

Lecture 21: Introduction to separation of variables

Gantumur Tsogtgerel

Math 319: Introduction to PDE McGill University, Montréal

Monday February 28, 2011

Poisson problem on interval

2 / 10

We considered the following problem on the interval $(0,\pi)$

$$u_{xx} = f$$
, $u(0) = u(\pi) = 0$.

We view this as inverting the operator $\Delta: v \mapsto v_{xx}$. We found the **eigenfunctions** and **eigenvalues** of Δ to be

$$v_j(x) = \sin(jx)$$
, and $\lambda_j = -j^2$, $(j = 1, 2, ...)$.

We take the followings facts as given.

- Any function f with $||f|| < \infty$ satisfies $f = \sum_{j=1}^{\infty} \beta_j v_j$ in the L^2 -sense, with the unique coefficients $\beta_j = \frac{2}{\pi} \langle f, v_j \rangle$.
- If $u = \sum_{j=1}^{\infty} \xi_j v_j$ in L^2 , then $u_{xx} = \left(\sum_{j=1}^{\infty} \xi_j v_j\right)_{xx} = \sum_{j=1}^{\infty} \xi_j \left(v_j\right)_{xx}$.

From those we immediately get

$$u_{xx} = \sum_{j=1}^{\infty} (-j^2) \xi_j v_j$$
, and so $u = \sum_{j=1}^{\infty} \frac{1}{(-j^2)} \beta_j v_j$.

Math 319 Lecture 21 Feb 28

Initial value problem for ODE

Consider the problem of finding $x(t) \in \mathbb{R}^n$ satisfying

$$x_t = Ax$$
, $x(0) = b$,

where A is an $n \times n$ symmetric matrix, and $b \in \mathbb{R}^n$ is a given initial state. There exist orthonormal set of eigenvectors v_1, \ldots, v_n , with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$:

$$Av_i = \lambda_i v_i$$
, with $\langle v_i, v_k \rangle \equiv v_i^T v_k = \delta_{ik}$.

Suppose that x and b are written in terms of the basis $\{v_i\}$ as

$$x(t) = \sum_{i} \xi_{i}(t) v_{i}, \qquad b = \sum_{i} \beta_{i} v_{i}.$$

Then we have

$$x_t = \sum_i (\xi_i)_t v_i, \qquad Ax = \sum_i \xi_i A v_i = \sum_i \xi_i \lambda_i v_i \qquad \Rightarrow \qquad \xi_i(t) = \beta_i e^{\lambda_i t},$$

so

$$x(t) = \sum_{i} \beta_{i} e^{\lambda_{i} t} v_{i} = \sum_{i} e^{\lambda_{i} t} \langle b, v_{i} \rangle v_{i}.$$

Heat equation on interval

Consider the initial-boundary value problem on $(0,\pi)$

$$u_t = \Delta u$$
, $u(0, t) = u(\pi, t) = 0$, $u(x, 0) = f(x)$,

where $\Delta u = u_{xx}$. Suppose that u and f are written in terms of the sine basis $\{v_i\}$ as

$$u(x,t) = \sum_{j=1}^{\infty} \xi_j(t) \nu_j(x), \qquad f = \sum_{j=1}^{\infty} \beta_j \nu_j.$$

Then we have

$$u_t = \sum_{j=1}^{\infty} (\xi_j)_t v_j, \qquad \Delta u = \sum_{j=1}^{\infty} \xi_j \Delta v_j = \sum_{j=1}^{\infty} \xi_j (-j^2) v_j \qquad \Rightarrow \qquad \xi_j(t) = \beta_j e^{-j^2 t},$$

SO

$$u(x,t) = \sum_{i=1}^{\infty} e^{-j^2 t} \beta_j \sin(jx).$$

5 / 10

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Math 319 Lecture 21 Feb 28

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Coefficients of u(x, 0.03)

Frequency components of u(x,0.03). Blue curve is u(x,0.03).

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Coefficients of u(x, 0.05)

Frequency components of u(x,0.05). Blue curve is u(x,0.05).

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Coefficients of u(x, 0.1)

Frequency components of u(x, 0.1). Blue curve is u(x, 0.1).

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Coefficients of u(x, 0.2)

Frequency components of u(x, 0.2). Blue curve is u(x, 0.2).

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Coefficients of u(x, 0.3)

Frequency components of u(x, 0.3). Blue curve is u(x, 0.3).

Heat equation with initial condition $f(x) = e^{-200(x-3/2)^2}$.

Coefficients of u(x, 0.5)

Frequency components of u(x, 0.5). Blue curve is u(x, 0.5).

Alternative derivation

6 / 10

Consider the problem

$$u_t = u_{xx},$$
 $u(0, t) = u(\pi, t) = 0,$ $u(x, 0) = f(x),$

on $(0,\pi)$. Suppose that we can write u(x,t) = X(x)T(t), i.e., variables separate. Then we have

$$u_t(x, t) = X(x)T'(t),$$
 $u_{xx}(x, t) = X''(x)T(t) \Rightarrow X(x)T'(t) = X''(x)T(t).$

Dividing through by X(x)T(t), we get

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)}.$$

The left hand side depends only on t, while the right hand side depends only on x. Hence the both sides must equal to a constant:

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = \lambda = \text{const.}$$

Math 319 Lecture 21 Feb 28

Alternative derivation

7 / 10

This gives the two equations

$$T'(t) = \lambda T(t), \qquad X''(x) = \lambda X(x).$$

The second equation with the boundary conditions $X(0) = X(\pi) = 0$, has the solution

$$X_j(x) = \sin(jx), \qquad \lambda_j = -j^2,$$

for every positive integer j. Then the first equation is solved by

$$T_j(t) = T_j(0)e^{-j^2t}.$$

By forming a linear combination of infinitely many solutions $u_j(x,t) = e^{-j^2t}\sin(jx)$, we get

$$u(x,t) = \sum_{j=1}^{\infty} C_j e^{-j^2 t} \sin(jx).$$

So we are back to the questions related to the eigenfunctions of Δ .

Wave equation on interval

Consider the initial-boundary value problem on $(0,\pi)$

$$u_{tt} = \Delta u$$
, $u(0, t) = u(\pi, t) = 0$, $u(x, 0) = f(x)$, $u_t(x, 0) = g(x)$.

Suppose

$$u(x,t) = \sum_{j=1}^{\infty} \xi_j(t) v_j(x), \qquad f = \sum_{j=1}^{\infty} \beta_j v_j, \qquad g = \sum_{j=1}^{\infty} \gamma_j v_j.$$

Then we have

$$(\xi_j)_{tt} = -j^2 \xi_j, \qquad \Rightarrow \qquad \xi_j(t) = \beta_j \cos(jt) + \frac{\gamma_j}{j} \sin(jt),$$

so

$$u(x,t) = \sum_{i=1}^{\infty} \left(\beta_j \cos(jt) + \frac{\gamma_j}{j} \sin(jt) \right) \sin(jx).$$

Frequency components of u(x,0). Blue curve is u(x,0).

Frequency components of u(x, 0.2). Blue curve is u(x, 0.2).

Frequency components of u(x, 0.4). Blue curve is u(x, 0.4).

Frequency components of u(x, 0.6). Blue curve is u(x, 0.6).

Frequency components of u(x, 0.8). Blue curve is u(x, 0.8).

Frequency components of u(x, 1.0). Blue curve is u(x, 1.0).

Frequency components of u(x, 1.2). Blue curve is u(x, 1.2).

Frequency components of u(x, 1.4). Blue curve is u(x, 1.4).

Frequency components of u(x, 1.6). Blue curve is u(x, 1.6).

Frequency components of u(x, 1.8). Blue curve is u(x, 1.8).

Frequency components of u(x,2.0). Blue curve is u(x,2.0).

Coefficients of u(x, 2.2)

Frequency components of u(x, 2.2). Blue curve is u(x, 2.2).

Laplace BVP on a rectangle

10 / 10

Consider the boundary value problem

$$u_{xx} + u_{yy} = 0$$
, $u(0, y) = u(\pi, y) = 0$, $u(x, 0) = f(x)$, $u(x, a) = g(x)$,

on $(0,\pi) \times (0,a)$. Suppose

$$u(x,y) = \sum_{j=1}^{\infty} \xi_j(y) v_j(x), \qquad f = \sum_{j=1}^{\infty} \beta_j v_j, \qquad g = \sum_{j=1}^{\infty} \gamma_j v_j.$$

Then we have

$$(\xi_j)_{yy} - j^2 \xi_j = 0,$$
 \Rightarrow $\xi_j(y) = \beta_j \cosh(jy) + \delta_j \sinh(jy),$

where $\delta_j = \frac{\gamma_j - \beta_j \cosh(ja)}{\sinh(ja)}$. The final solution is

$$u(x,y) = \sum_{j=1}^{\infty} (\beta_j \cosh(jy) + \delta_j \sinh(jy)) \sin(jx).$$

Math 319 Lecture 21 Feb 28