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Poisson problem on interval

We are considering the following problem on the interval (0,π)

uxx = f , u(0) = u(π) = 0.

We view this as inverting the operator ∆ : v 7→ vxx. We found the
eigenfunctions and eigenvalues of ∆ to be

vj(x) = sin( jx), and λj =−j 2,
(

j = 1,2, . . .
)

.

We take the followings facts as given.
Any function f with ‖f ‖ <∞ satisfies f =∑∞

j=1βjvj in the L2-sense,
with the unique coefficients βj = 2

π 〈f ,vj〉.
If u =∑∞

j=1 ξjvj in L2, then uxx =
(∑∞

j=1 ξjvj

)
xx

=∑∞
j=1 ξj

(
vj

)
xx.

From those we immediately get

uxx =
∞∑

j=1
(−j 2)ξjvj, and so u =

∞∑
j=1

1

(−j 2)
βjvj.
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Fourier sine basis

v1(x) = sinx, v2(x) = sin2x, v3(x) = sin3x, and v4(x) = sin4x.
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Example

Solving uxx = 1 on (0,π) with the boundary conditions u(0) = u(π) = 0.
The solution is u(x) = 1

2 x(x−π).

1 =
∞∑

j=1

2(1− (−1)j)

jπ
sin jx.

1 term with next update:
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∞∑

j=1

2((−1)j −1)

j 3π
sin jx.

1 term with next update:
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Example

Solving uxx = 1 on (0,π) with the boundary conditions u(0) = u(π) = 0.
The solution is u(x) = 1

2 x(x−π).

1 =
∞∑

j=1

2(1− (−1)j)

jπ
sin jx.

3 terms with next update:
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j=1

2((−1)j −1)

j 3π
sin jx.

3 terms with next update:
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Example

Solving uxx = 1 on (0,π) with the boundary conditions u(0) = u(π) = 0.
The solution is u(x) = 1

2 x(x−π).

1 =
∞∑

j=1

2(1− (−1)j)

jπ
sin jx.

5 terms with next update:
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u(x) =
∞∑

j=1

2((−1)j −1)

j 3π
sin jx.

5 terms:
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Example

Solving uxx = 1 on (0,π) with the boundary conditions u(0) = u(π) = 0.
The solution is u(x) = 1

2 x(x−π).

1 =
∞∑

j=1

2(1− (−1)j)

jπ
sin jx.

1, 5, 21 terms:
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2((−1)j −1)
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Example

Solving uxx = 1 on (0,π) with the boundary conditions u(0) = u(π) = 0.
The solution is u(x) = 1

2 x(x−π).

1 =
∞∑

j=1

2(1− (−1)j)

jπ
sin jx.
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sin jx.
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Orthogonality

Let g be a function with ‖g‖ <∞, and let

gn =
n∑

j=1
〈g,vj〉vj,

be its truncated sine series (We normalize vj so that ‖vj‖ = 1). Then

〈g −gn,vk〉 = 〈g,vk〉−
〈∑n

j=1〈g,vj〉vj,vk

〉
= 〈g,vk〉−

∑n
j=1〈g,vj〉〈vj,vk〉 = 0,

if k ≤ n. This means g −gn is orthogonal to the subspace spanned by
v1, . . . ,vn. In particular, g −gn ⊥ gn. We have the Pythagorean theorem:

‖g‖2 = 〈g,g〉 = 〈g −gn +gn,g −gn +gn〉
= 〈g −gn,g −gn〉+〈g −gn,gn〉+〈gn,g −gn〉+〈gn,gn〉
= 〈g −gn,g −gn〉+〈gn,gn〉 = ‖g −gn‖2 +‖gn‖2.

This implies Bessel’s inequality:

‖gn‖ ≤ ‖g‖.
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Optimality of the truncated series

Let
Sn = span

{
v1, . . . ,vn

}
,

and let h ∈ Sn be an arbitrary element of Sn. Then w = gn −h ∈ Sn, and

‖g −h‖2 = 〈g −gn +gn −h,g −gn +gn −h〉 = 〈g −gn +w,g −gn +w〉
= 〈g −gn,g −gn〉+〈g −gn,w〉+〈w,g −gn〉+〈w,w〉
= 〈g −gn,g −gn〉+〈w,w〉 = ‖g −gn‖2 +‖w‖2.

This means
‖g −gn‖ ≤ ‖g −h‖ for any h ∈ Sn,

or equivalently
‖g −gn‖ = min

h∈Sn

‖g −h‖.

So gn =∑n
j=1〈g,vj〉vj is as close to g as one gets by using linear

combinations of the first n eigenfunctions v1, . . . ,vn.
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Review guide: General concepts and elliptic equations

General considerations:
Classification by order, by linear or nonlinear
Change of variables in PDE
Classification of linear second order PDEs
Canonical forms

Model elliptic equations are Laplace and Poisson:
Derivation of the equations in electrostatics
Interpretation as steady state of heat or wave equations
Dirichlet principle, Dirichlet energy, uniqueness
5-point discretization, discrete maximum principle
Method of electrostatic images
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Review guide: Hyperbolic and parabolic equations

Model hyperbolic equations are wave and advection:
Characteristic coordinates, method of characteristics
Simple discretization of advection equation, CFL condition
Derivation of wave equation for elastic string
D’Alambert’s solution of the 1D wave equation
Poisson’s formula for 3D waves, and method of descent for 2D waves
Energy inequality, uniqueness

Model parabolic equation is heat:
Derivation from heat conduction problem
Self-similar solutions, fundamental solution
Discretization by explicit and implicit methods, discrete maximum
principle
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