Lecture 2: Linear algebra and simple ODEs

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

January 6, 2011

The simplest differential equation

Find $u: \mathbb{R} \to \mathbb{R}$ such that

$$u_x = f$$
,

with e.g.
$$f(x) = \sin x$$
.

Direct integration gives

$$u(x) - u(0) = \int_0^x f(t) dt.$$

Integration generalizes to solving differential equations.

Second example

$$u_x = u$$
.

The solutions are

$$u(x)=u(0)e^x.$$

Third example

$$u_x = \sin u + \cos x$$
.

Linearity

5 / 8

lan 6

Let us consider the operation of forming the function u_x out of the function u:

$$Du := u_x$$
.

We call D an **operator** acting on functions.

• For any $\alpha \in \mathbb{R}$, and any **differentiable** function u, we have

$$D(\alpha u) = \alpha \cdot Du$$
.

ullet For any functions u and v both **differentiable**, we have

$$D(u+v) = Du + Dv$$
.

If D is an operator that satisfies the preceding two conditions, then we say D is a **linear operator**.

Linear equations

6 / 8

The differential equation $u_x = f$ can be rewritten as

$$Du = f$$
.

This looks an awful lot like the linear algebraic equation

$$Ay = b$$
.

The similarity is deeper, because D and A are both **linear**. The only difference is that while A is a matrix acting on n-dimensional vectors, D is an operator acting on functions.

For concreteness, let $C(\mathbb{R})$ denote the space of continuous functions on \mathbb{R} , and let $C^1(\mathbb{R})$ be the space of continuously differentiable functions. Then

$$D: C^1(\mathbb{R}) \to C(\mathbb{R}),$$
 and $A: \mathbb{R}^n \to \mathbb{R}^m.$

Trying to solve Du = f means essentially trying to invert D.

Linear algebra

The range (or column space) and the kernel (or null space) of A are

$$\operatorname{Ran} A = \{Ay : y \in \mathbb{R}^n\}, \quad \text{and} \quad \operatorname{Ker} A = \{y : Ay = 0\}.$$

- If $b \in \text{Ran } A$ then Ay = b has a solution (existence).
- Suppose that Ay = b and Az = b. Then

$$A(y-z) = Ay - Az = b - b = 0,$$

so $y-z \in \text{Ker } A$.

- If $Ker A = \{0\}$, then y = z (uniqueness).
- If Ay = b and $q \in \text{Ker } A$, then

$$A(y+q) = Ay + Aq = b + 0 = b,$$

so y+q is also a solution.

• If Ay = b then $\{y + q : q \in \text{Ker } A\}$ is the **set of all solutions**.

Euler's finite difference method

8 / 8

We have $u_x(x) \approx \frac{u(x+h)-u(x)}{h}$ for small h, if e.g. $u \in C^1(\mathbb{R})$. So $u_x = f$ is something like

$$y_{i+1} - y_i = b_i,$$

where $y_i \approx u(ih)$ and $b_i \approx hf(ih)$. This can be solved as

$$y_n = y_{n-1} + b_{n-1} = y_{n-2} + b_{n-2} + b_{n-1} = \dots = y_0 + b_0 + \dots + b_{n-1}.$$

Let us rewrite the equation as

with

$$Ay = b$$
,

$$y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}, \qquad b = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix}, \qquad A = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}_{n \times (n+1)}.$$

The dimension of Ker A is 1.