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Questions

@ What is the derivative of

Fo = {0, forx<0}

x, forx>0

e f'=0, where 6 is the Heaviside step function

{0, for x<O0,
O(x) =
, forx>0.

—

@ What is the derivative of 67
@ The delta “function” 8(x): 0’ =6.

@ What is the value off efszds?
0

(o)
° f e_szds=ﬁ.
0 2
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Heat conduction

Let us consider the heat conduction problem in a homogeneous bar, that
can be thought of as a 1D object. Imagine that the bar is divided into
small segments of length h, and let x be the midpoint of one of those
segments. Then the heat energy in that segment at the time moment ¢ is

Q(t) = opshu(x, 1),

where o is the specific heat, p is the density, s is the cross sectional area
of the bar, and we assumed that u is constant thoughout the segment.

The heat transferred to the segment from its two neighbors in time

interval 7 is
Fe kst u(x—h, t})l— u(x, 1 + kst u(x+ h, 2— u(x, t) ’

where k is the heat conductivity. A combination of these gives

Q(t+1)— Q1) = opsh(ulx, t+ 1) — u(x, 1)
ux+ht)—ulxn  wx—h 1) —ukx1)

—k
St h h
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Heat equation

Rewriting

ux+h-uxt _ ux=—hd-ux1
h h

ulx, t+7) —ulx, 1 i
T ~op h '

and sending h,7 — 0, we get the heat equation
U = KlUxx,

also known as the diffusion equation.

The heat equation is used to model the diffusion of heat, chemicals, and
other quantities.

Note that if u(x, ) satisfies u; = xuyy, then v(x, 1) = u(x, t/x) satisfies

VUt = Uyx.
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Self similar solutions

Note also that if u(x, £) is a solution, so is v(x, t) = u(Ax, A%f) for any A.
Therefore it is natural to look for solutions of the form u(x, 1) = w(ﬁt).

We have
/ © x , X 2x
us(x, t) = w (—)(——2), U(x, 1) =W (_)(_)'
t r t) Ut
U (X, ) = W' (ﬁ) . (g) +u (é) . (g)
4 t t t

Upon imposing u; = uyy, this leads to

4u/’(€)+(§+1)u/(€) =0,

where & = ﬁt Solving for w' gives
W (E) = CEV2gé

and finally

& e—r/4
=C dr+ C.
w(é) fo NG r+C

Math 310 Lecture 15 Feb7 51



Self similar solutions

By the substitutions r=? and y=2s, we get

Ve NG
w(é) = Cf efy2/4dy+ G = Cf e ds+ G.
0

0
We derived
x/Vat
ulx,)=C f e_szds+ G,
0

as a solution of the heat equation. Consider the initial condition

0, forx<o,
u(x,0) =
1, forx>0.

For x>0 and x <0 respectively, letting ¢ — 0, we infer
® - R

1=Cf e S ds+C = vrCl2+C, O=C[ e S ds+C = —-rCl2+C,.
0 0
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An idealized heat transfer problem

Finally, we have

1 1 it 1 1
_ X
ux, ) =—-—+— f eszdss—+—erf(—),
2 T J 2 2 Vat
12
solving the heat 10
equation with the oel
initial condition given ’
by the Heaviside step osf
function.
04}
Time t=0: o2l
-5 0 5
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An idealized heat transfer problem

Finally, we have

1 1 X it 1 1
X
ux, ) =—-—+— f e_szdss—+—erf(—),
2 va ) 2 2 \var

12~
solving the heat 10
equation with the 08(
initial condition given :
by the Heaviside step 06
function. ol
Time £=10.01: O’ji

-5 0 5
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An idealized heat transfer problem

Finally, we have

) ) x/ V4t 11
ux,t)=—-+— f e_szdss—+—erf(i),
2 ™ 2 2 Vat

solving the heat
equation with the
initial condition given
by the Heaviside step
function.

Time r=0.1:
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An idealized heat transfer problem

Finally, we have

1 1 it 1 1
X
ux, ) =—-—+— f e_szdss—+—erf(—),
2 va ) 2 2 \var

12
solving the heat 1of
equation with the oel
initial condition given ’
by the Heaviside step 06
function.
Time £=0.3:
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An idealized heat transfer problem

Finally, we have

1 1 x/ V4t L1
_ X
ux, ) =—-—+— f eszdss—+—erf(—),
2 va ) 2 2 \ar
12

solving the heat 1of

equation with the oel

initial condition given ’

by the Heaviside step o8,

function. s

Time t=1: o2f

-5 0 5
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An idealized heat transfer problem

Finally, we have

1 1 it 1 1
_ X
ux, ) =—-—+— f eszdss—+—erf(—),
2 va ) 2 2 \ar
12

solving the heat 1of

equation with the oel

initial condition given ’

by the Heaviside step o8

function. f

Time t=2: 02l

-5 0 5

Math 319 Lecture 15 Feb 7

7/1



An idealized heat transfer problem

Finally, we have

1 1 it 1 1
X
ux, ) =—-—+— f e_szdss—+—erf(—),
2 va ) 2 2 \var

12
solving the heat 1of
equation with the oel
initial condition given ’
by the Heaviside step o8
function.
Time t=4:
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An idealized heat transfer problem

Finally, we have

1 1 it 1 1
X
ux, ) =—-—+— f e ds= —+—erf(—),
2 va ) 2 2 \ar
12
solving the heat 1of
equation with the oel
initial condition given ’
by the Heaviside step o8
function.
Time t=8:
5
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An idealized heat transfer problem

Finally, we have

) ) x/ V4t 11
ux,t)=—-+— f e_szdss—+—erf(i),
2 ™ 2 2 Vat

solving the heat
equation with the
initial condition given
by the Heaviside step
function.

Time t=
0,0.01,0.1,0.3,1,2,4,8:
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An idealized heat transfer problem

Finally, we have

x/Vat
+

N =

u(x, t) =

Sl -
—
cQI
‘4
o,
©
1]
N =
+
N =
]
=
—+
—_——
il-
~
N —

solving the heat
equation with the
initial condition given
by the Heaviside step
function.

3D plot:
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The fundamental solution

If we differentiate

) ) x/ V4t
-
ux,t)=-—+— e > ds,
2 r
0
with respect to x, we find
. _ —2/(40)
Glx, 1) == u(x, ) = ——e R
* Vart

which also solves the heat equation. This solution is called the
fundamental solution of the heat equation.

Note that G(0,f) = oo as t— 0, and G(x,t) — 0 as t— 0 if x#0. Note
also that for any >0

o0
f G, dx=1,
—00

so the initial condition for the fundamental solution is the delta function
concentrated at 0.
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The fundamental solution

G(x, 0 = \/%me‘xz/(‘m Time t=0.02:
20
15
14!
opr
I\
5 0 5
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The fundamental solution

G, 1) = \/%me‘xz’(‘”) Time £=0.1:

20~

15
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The fundamental solution

Glx, 0 = \/%me‘xz/(‘m Time t=0.3:
12;
1.0}
0.8}
0.6}
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The fundamental solution

G(x, 1) = \/%me—xz/(‘”) Time =1
12;
1.0}
0.8}
0.6}
0.4}
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The fundamental solution

G(x, 1) = \/%me—xz/(‘”) Time ¢=2:
12;
1.0}
0.8}
0.6}
0.4}
/\
s o s
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The fundamental solution

Gx, 1) = \/%me—le(m Time t=4:

12;
1.0 7
08 7
06 7
0.4 7

02F

-5 0 5
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The fundamental solution

Glx, 0 = A= e/40 Time r=8:
12;
1.0}
0.8}
0.6}
0.4}
0.2}
% ; e
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The fundamental solution

Glx, 1) = \/%me—xz/(‘”) Time £=0.02,0.1,0.3,1,2,4,8:
2.0
1.5
1.
-5 0 5
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The fundamental solution

Gx, ) = \/%me—le(m 3D plot:
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Cauchy problem

For general initial condition u(x,0) = f(x), the heat equation is solved by

ux, o) = f Glx—y,0f(dy= eI £ () gy,

1 /“’0
VantJ-c
Observe that

e u(x, 1) — 0 like 7 as t— oo.

@ information propagates with infinite speed.
Although we do not prove here, it is true that

@ u(x, 1) is infinitely smooth as a function of x, for £>0.

@ u(x, t) behaves badly if £ <0, even for reasonable choices of f.
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