Lecture 15: Heat equation on the real line

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

Monday February 7, 2011

Questions

What is the derivative of

$$f(x) = \begin{cases} 0, & \text{for } x < 0 \\ x, & \text{for } x > 0 \end{cases} ?$$

• $f' = \theta$, where θ is the Heaviside step function

$$\theta(x) = \begin{cases} 0, & \text{for } x < 0, \\ 1, & \text{for } x > 0. \end{cases}$$

- What is the derivative of θ ?
- The delta "function" $\delta(x)$: $\theta' = \delta$.
- What is the value of $\int_0^\infty e^{-s^2} ds$?

Heat conduction

3 / 1

Let us consider the heat conduction problem in a homogeneous bar, that can be thought of as a 1D object. Imagine that the bar is divided into small segments of length h, and let x be the midpoint of one of those segments. Then the heat energy in that segment at the time moment t is

$$Q(t) = \sigma \rho shu(x, t),$$

where σ is the specific heat, ρ is the density, s is the cross sectional area of the bar, and we assumed that u is constant thoughout the segment.

The heat transferred to the segment from its two neighbors in time interval τ is

$$F = ks\tau \frac{u(x-h,t) - u(x,t)}{h} + ks\tau \frac{u(x+h,t) - u(x,t)}{h},$$

where k is the heat conductivity. A combination of these gives

$$Q(t+\tau) - Q(t) = \sigma \rho sh \Big(u(x,t+\tau) - u(x,t) \Big)$$
$$= ks\tau \left(\frac{u(x+h,t) - u(x,t)}{h} - \frac{u(x-h,t) - u(x,t)}{h} \right).$$

Heat equation

Rewriting

$$\frac{u(x,t+\tau)-u(x,t)}{\tau}=\frac{k}{\sigma\rho}\frac{\frac{u(x+h,t)-u(x,t)}{h}-\frac{u(x-h,t)-u(x,t)}{h}}{h},$$

and sending $h, \tau \to 0$, we get the **heat equation**

$$u_t = \kappa u_{xx}$$
,

also known as the diffusion equation.

The heat equation is used to model the diffusion of heat, chemicals, and other quantities.

Note that if u(x, t) satisfies $u_t = \kappa u_{xx}$, then $v(x, t) = u(x, t/\kappa)$ satisfies

$$v_t = v_{xx}$$
.

Self similar solutions

5 / 1

Note also that if u(x,t) is a solution, so is $v(x,t)=u(\lambda x,\lambda^2 t)$ for any λ . Therefore it is natural to look for solutions of the form $u(x,t)=w(\frac{x^2}{t})$. We have

$$\begin{split} u_t(x,t) &= w'\left(\frac{x^2}{t}\right) \cdot \left(-\frac{x^2}{t^2}\right), & u_x(x,t) &= w'\left(\frac{x^2}{t}\right) \cdot \left(\frac{2x}{t}\right), \\ u_{xx}(x,t) &= w''\left(\frac{x^2}{t}\right) \cdot \left(\frac{4x^2}{t^2}\right) + w'\left(\frac{x^2}{t}\right) \cdot \left(\frac{2}{t}\right). \end{split}$$

Upon imposing $u_t = u_{xx}$, this leads to

$$4w''(\xi) + (\frac{2}{\xi} + 1)w'(\xi) = 0,$$

where $\xi = \frac{x^2}{t}$. Solving for w' gives

$$w'(\xi) = C\xi^{-1/2}e^{-\xi/4},$$

and finally

$$w(\xi) = C \int_0^{\xi} \frac{e^{-r/4}}{\sqrt{r}} dr + C_1.$$

Self similar solutions

By the substitutions $r = y^2$ and y = 2s, we get

$$w(\xi) = C \int_0^{\sqrt{\xi}} e^{-y^2/4} dy + C_1 = C \int_0^{\sqrt{\xi}/2} e^{-s^2} ds + C_1.$$

We derived

$$u(x,t) = C \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds + C_1,$$

as a solution of the heat equation. Consider the initial condition

$$u(x,0) = \begin{cases} 0, & \text{for } x < 0, \\ 1, & \text{for } x > 0. \end{cases}$$

For x > 0 and x < 0 respectively, letting $t \to 0$, we infer

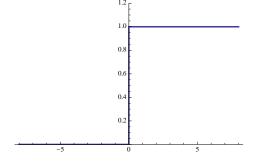
$$1 = C \int_0^\infty e^{-s^2} ds + C_1 = \sqrt{\pi} C/2 + C_1, \qquad 0 = C \int_0^{-\infty} e^{-s^2} ds + C_1 = -\sqrt{\pi} C/2 + C_1.$$

Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 0:



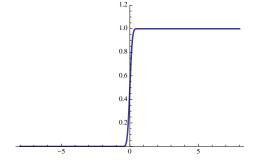
Feb 7

Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 0.01:

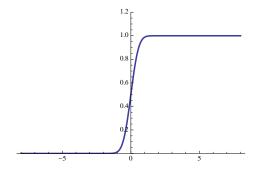


Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds \equiv \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 0.1:



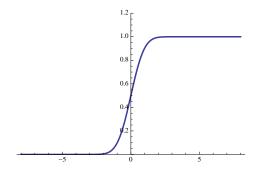
7 / 1

Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds \equiv \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 0.3:

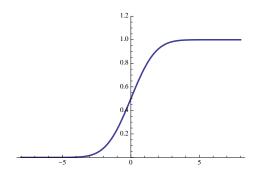


Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds \equiv \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 1:

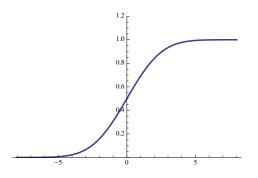


Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds \equiv \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 2:

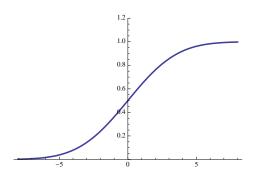


Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 4:

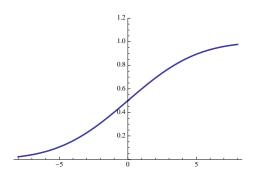


Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 8:



Feb 7

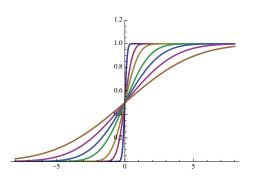
7 / 1

Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

Time t = 0,0.01,0.1,0.3,1,2,4,8:

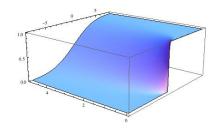


Finally, we have

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds \equiv \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right),$$

solving the heat equation with the initial condition given by the Heaviside step function.

3D plot:



Feb 7

8 / 1

If we differentiate

$$u(x,t) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{x/\sqrt{4t}} e^{-s^2} ds,$$

with respect to x, we find

$$G(x, t) := u_x(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)},$$

which also solves the heat equation. This solution is called the **fundamental solution** of the heat equation.

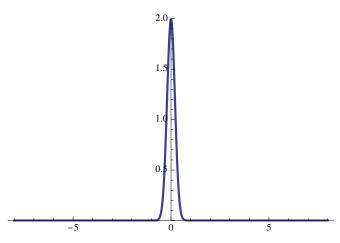
Note that $G(0,t) \to \infty$ as $t \to 0$, and $G(x,t) \to 0$ as $t \to 0$ if $x \ne 0$. Note also that for any t > 0

$$\int_{-\infty}^{\infty} G(x, t) \mathrm{d}x = 1,$$

so the initial condition for the fundamental solution is the delta function concentrated at 0.

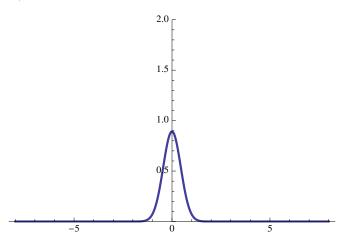
$$G(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time t = 0.02:



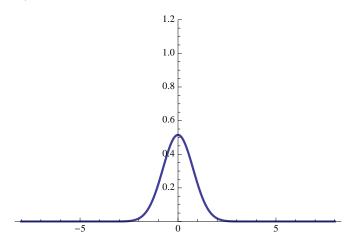
$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time
$$t = 0.1$$
:



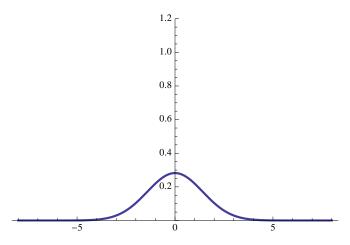
$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time
$$t = 0.3$$
:



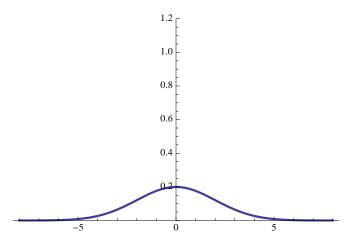
$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time t = 1:



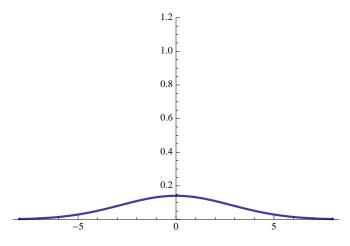
$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time t = 2:



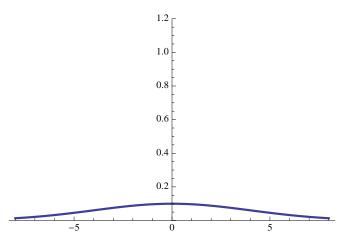
$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time t = 4:



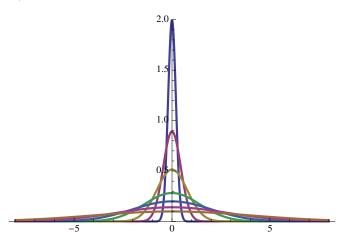
$$G(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time t = 8:



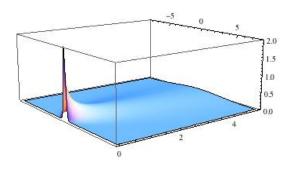
$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

Time t = 0.02, 0.1, 0.3, 1, 2, 4, 8:



$$G(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

3D plot:



Cauchy problem

For general initial condition u(x,0) = f(x), the heat equation is solved by

$$u(x,t) = \int_{-\infty}^{\infty} G(x - y, t) f(y) dy = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-|x - y|^2/(4t)} f(y) dy.$$

Observe that

- $u(x,t) \to 0$ like $\frac{1}{\sqrt{t}}$ as $t \to \infty$.
- information propagates with infinite speed.

Although we do not prove here, it is true that

- u(x, t) is infinitely smooth as a function of x, for t > 0.
- u(x,t) behaves badly if t < 0, even for reasonable choices of f.