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Spherical waves

Let us look for radial solutions of the 3D wave equation, i.e., consider
Uy —Au=0, u(r,0) = f(n), ug(r,0) = g(n),

where r is the radial coordinate. We have

“r2or\ ar) r’singde (paqo 12 sin® ¢ 062
2

1 1 1
= —Ur+ Uy =—WUr+Ur+TUy) = —(U+TU) = = (U,
r r r r
so the wave equation becomes
1
;(ru)rr— Uy =0 = () — (r) e =0,

hence v(r, t) = ru(r, t) satisfies the 1D wave equation.
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Spherical waves

D’Alamber’s formula gives

r+t
ru(r, f) = v(r+t,0)42rv(r—t,0) +%fvt(s,0)ds
r—t
OO+ = 0f—10 [
= 5 +§fsg(s)ds,
r—t
and so
Fr+n+fo—0  ford-fo-0 o [
u(r, 1) = 5 +1t- P +2—rfsg(s)ds.
r—t

We are interested in the solution at r=0, in particular, whether or not
u(0, 1) is finite. Since f is even, for the first term we have

FO+f=0=f@O+f(0)=2f().
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Spherical waves

We have, for the second term

fa+0-fr-1 _ fa+)—ft-17
2r B 2r

— (0 as r—0,

and for the third term

r+t r+t r+t t—-r t+r

0
fsg(s)ds—f f f f:fsg(s)ds:Zr-tg(t)+O(72).
0 -r

r—t r—t T

Finally
w0, 1) = f(0) +tf (1) + 1g(0) = (1)), + 18(1).
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Alternative derivation of Poisson’s formula

For any function u, define its spherical average

_ 1
u(r,t)zm f u(x, £)dSy.

[xl=r
If u satisfies the wave equation, so does u. We have
u(0, 1) =u(0, 1) = (ru(t,0)), + fu, (1, 0).

Then noting that
_ 1
u(t,0) = W f f(x)der
|x|=t
and .
Uus(¢,0) = o) f g(x)dSy,

|x|=t

Poisson’s formula follows.
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Energy

Let u(x,y,t) be the solution of the 2D wave equation, and consider a
(right) cone with vertex at some (xg, 0, ), f >0, and with circular base
of radius fy in the initial plane surface t=0. Let 0 < T < £y, and denote
the intersection of the solid cone with the plane t=T by Dr. In
particular, Dy is the base or the “bottom surface” of the cone.
We want to prove
5(1‘)::[ W+ 10+ u%sf 1+ 12+ uf = 8(0),
Dr Dy

for the wave equation in 2D. We will use the identity

2up (Uxx + Uyy — Up) = QUrty) x + Curtty)y — (ujzc+ uf,+ u?)t =:diviv.

Since uyy + Uy, — uy =0, with Q being the part of the solid cone that lies
between Dy and D, and C being the lateral surface of Q, we have

ozf 2ut(uxx+uyy—un)=f divW:f W:—f (W + 1y + uf)
Q Q 0Q Dr

+ (u126+ u§+u§)+f 2utuxnx+2utuyny—(ui+ u§+ u%)nt,
Dy C

where (ny, iy, ny) is the unit normal vector of the conical surface C.
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2

2, 2 2 202 4 2 — 22—
From ni+ny=n; and ny+njy+ny =1, we have ny = ny+nj = 5.

Let us rearrange the integrand of the third integral as

2,02, 2
2UUx Ny + 22Uty ny — (U + uy, + u;)n;

= 20U Uy Ry + 20 Uy Ty — (u,zc + uf,)nt - u%(nfﬁ ni)\/z.
Now we complete the squares

2UplUy Ny — ufcnt— \/Eu%njzc =2V2uunen;, — \/Eujzcn% - \/§u§ nJZC

= —\/z(uxn,— u,nx)z.

Using this, we get
fDT(ufﬁ uf,+ ) = fDO(u§+ uf,+ u?) - \/Efc(uxnt— un)® + (uyng — ugny)?

sf(@+@+ﬁy
Dy
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Domain of dependence and uniqueness

We have
fDT(uimgmg) stO(u§+u32,+u§).

So if u=0and u; =0 on Dy, then uy,=u,=u,=0 at any point in Q.
Hence u is constant in Q. Since u=0 at Dy, u=0 in Q. By considering
the difference between two supposed solutions of the Cauchy problem, we
conclude

The solution u of the wave equation in the solid cone Q is

uniquely determined by u and u; at the initial surface Dy.

In particular, the Cauchy problem for the wave equation has a
unique solution.
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