Lecture 13: Waves in space and on the plane

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

Tuesday February 1, 2011

Maxwell's equations

Maxwell's equations in vacuum are

$$\frac{\partial E}{\partial t} = c\nabla \times B, \qquad \nabla \cdot E = 0, \qquad \frac{\partial B}{\partial t} = -c\nabla \times E, \qquad \nabla \cdot B = 0,$$

where E is the electric field, and B is the magnetic field. We have

$$\frac{\partial^2 E}{\partial t^2} = c \nabla \times \frac{\partial B}{\partial t} = -c^2 \nabla \times \nabla \times E = c^2 \left(\Delta E - \nabla (\nabla \cdot E) \right) = c^2 \Delta E.$$

So the electric field satisfies the wave equation

$$E_{tt} - c^2 \Delta E = 0.$$

The same holds for the magnetic field.

Wave equation

3/6

The Cauchy problem for the wave equation in 3D is

$$u_{tt} - \Delta u = 0,$$
 $u(x, 0) = f(x),$ $u_t(x, 0) = g(x),$

where u(x,t) is the unknown solution $(x \in \mathbb{R}^3, t > 0)$. Let $\phi(x)$ be a function defined on \mathbb{R}^3 . Then we define

$$u(x,t) = \frac{1}{4\pi t} \int_{|y-x|=t} \phi(y) dS_y = \frac{t}{4\pi} \int_{|y|=1} \phi(x+yt) dS_y,$$

and claim that u satisfies the wave equation. Note that u(x,0)=0. We have

$$\Delta u = \frac{t}{4\pi} \int_{|y|=1} \Delta \phi(x+yt) dS_y = \frac{1}{4\pi t} \int_{|y-x|=t} \Delta \phi(y) dS_y.$$

Spherical means

$$\begin{split} u_t(x,t) &= \frac{1}{4\pi} \int_{|y|=1} \phi(x+yt) \mathrm{d}S_y + \frac{t}{4\pi} \int_{|y|=1} \nabla \phi(x+yt) \cdot y \mathrm{d}S_y \\ &= \frac{u(x,t)}{t} + \frac{1}{4\pi t} \int_{|y-x|=t} \nabla \phi(y) \cdot n \mathrm{d}S_y \\ &= \frac{u(x,t)}{t} + \frac{1}{4\pi t} \int_{|y-x| \le t} \Delta \phi(y) \mathrm{d}S_y =: \frac{u(x,t)}{t} + \frac{1}{4\pi t} \Phi(x,t). \end{split}$$

Note that $u_t(x,0) = \phi(x)$. For the second derivative

$$u_{tt}(x,t) = \frac{tu_t - u}{t^2} + \frac{t\Phi_t - \Phi}{4\pi t^2} = \frac{1}{t} \left(u_t - \frac{u}{t} - \frac{1}{4\pi t} \Phi \right) + \frac{1}{4\pi t} \Phi_t = \frac{1}{4\pi t} \Phi_t.$$

Note that $u_{tt}(x,0) = 0$.

$$\Phi_t = \frac{\partial}{\partial t} \int_{|y-x| \le t} \Delta \phi(y) dS_y = \int_{|y-x| = t} \Delta \phi(y) dS_y.$$

So $\Delta u = u_{tt}$, u(x, 0) = 0, and $u_t(x, 0) = \phi(x)$.

Poisson's formula

5/6

Since $u_{tt} - \Delta u = 0$, we have

$$0 = \frac{\partial}{\partial t}(u_{tt} - \Delta u) = (u_t)_{tt} - \Delta(u_t),$$

so $v = u_t$ satisfies $v_{tt} - \Delta v = 0$, $v(x, 0) = \phi(x)$, and $v_t(x, 0) = 0$. Hence

$$u(x,t) = \frac{1}{4\pi t} \int_{|y-x|=t} g(y) \mathrm{d}S_y + \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{|y-x|=t} f(y) \mathrm{d}S_y \right),$$

satisfies $u_{tt} - \Delta u = 0$, u(x,0) = f(x), and $u_t(x,0) = g(x)$. This formula is due to Poisson (1819), and often called also Kirchhoff's formula. Introducing the spherical average

$$M_t[\phi](x) = \frac{1}{4\pi t^2} \int_{|y-x|=t} \phi(y) dS_y,$$

Poisson's formula can be written as

$$u = tM_t[g] + \frac{\partial}{\partial t}(tM_t[f]).$$

Method of descent: Waves in 2D

6/6

Recall

$$u(x,t) = \frac{1}{4\pi t} \int_{|y-x|=t} g(y) \mathrm{d}S_y + \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{|y-x|=t} f(y) \mathrm{d}S_y \right),$$

satisfies $u_{tt} - \Delta u = 0$, u(x,0) = f(x), and $u_t(x,0) = g(x)$. If $f(x) = f(x_1,x_2,x_2)$ and $g(x) = g(x_1,x_2,x_3)$ are independent of x_3 , then u defined above will also be independent of x_3 , and moreover satisfy the 2-dimensional initial value problem

$$u_{tt} - \Delta_2 u = 0,$$
 $u(\xi, 0) = f(\xi),$ $u_t(\xi, 0) = g(\xi),$

where Δ_2 is the 2-dimensional Laplacian, and $\xi \in \mathbb{R}^2$. Explicit calculation gives

$$u(\xi,t) = \frac{1}{4\pi t} \int_{|\eta-\xi| \le t} \frac{g(\eta) \mathrm{d}\eta}{\sqrt{t^2 - |\eta-\xi|^2}} + \frac{\partial}{\partial t} \left(\int_{|\eta-\xi| \le t} \frac{f(\eta) \mathrm{d}\eta}{\sqrt{t^2 - |\eta-\xi|^2}} \right).$$