IN CON

Lecture 11: D'Alambert's solution

Gantumur Tsogtgerel

Assistant professor of Mathematics

Math 319: Introduction to PDEs McGill University, Montréal

Thursday January 27, 2011

Where are we?

Laplace: $u_{xx} + u_{yy} = 0$, Poisson: $u_{xx} + u_{yy} = f$

- Stationary phenomena
- Boundary value (Dirichlet) problem: u is given at the boundary
- There exists a solution, and it is unique
- Explicitly solvable if the domain is the entire space
- Method of electrostatic images: works for very simple domains, and constant boundary conditions
- Finite differences: a numerical method for approximate solution

Wave: $u_{tt} - u_{xx} = 0$, advection: $u_t + u_x = 0$

- Transport phenomena
- Initial value (Cauchy) problem: some information is given at the initial time moment
- Characteristic coordinates are best suited
- D'Alambert's solution for the wave equation

Heat: $u_t - u_{xx} = 0$ (later)

Recall that the solution of the initial value problem for the wave equation

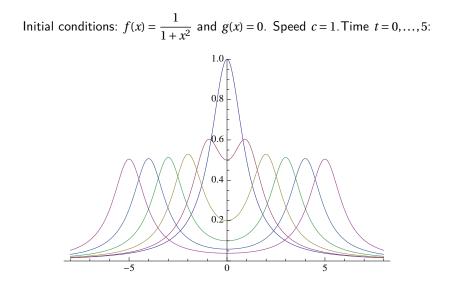
$$u_{tt} - c^2 u_{xx} = 0,$$
 $u(x, 0) = f(x),$ $u_t(x, 0) = g(x),$

is given by D'Alambert's formula

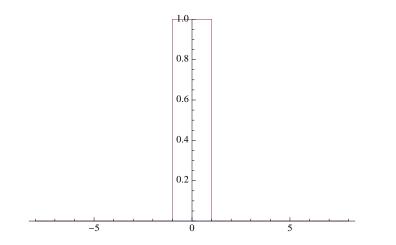
$$u(x,t) = \frac{1}{2}f(x+ct) + \frac{1}{2}f(x-ct) + \frac{1}{2c}\int_{x-ct}^{x+ct} g(s)ds.$$

We can calculate the time derivative of u as

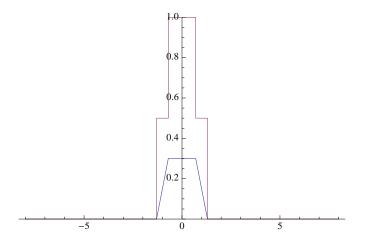
$$u_t(x,t) = \frac{c}{2}f'(x+ct) - \frac{c}{2}f'(x-ct) + \frac{1}{2}g(x+ct) + \frac{1}{2}g(x-ct).$$



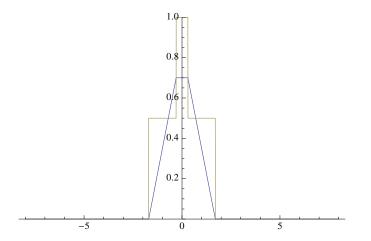
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. t = 0:



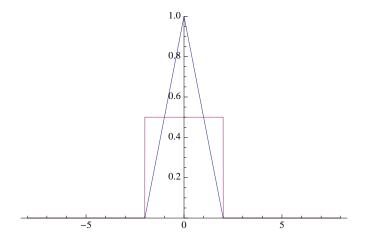
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 0.3:



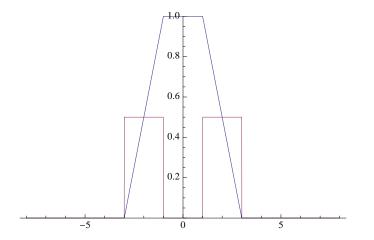
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 0.7:



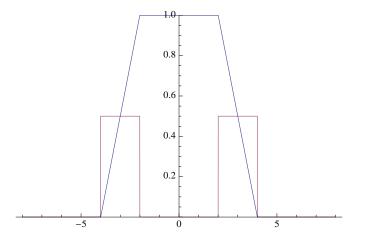
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 1:



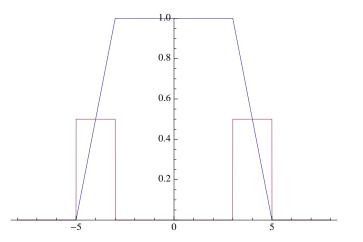
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 2:



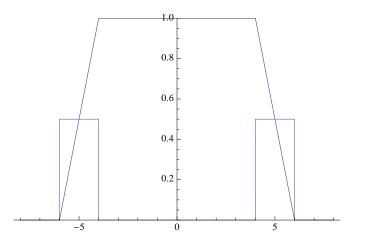
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 3:



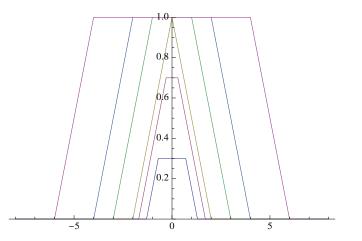
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 4:



Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 5:

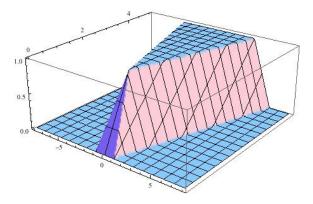


Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. Time t = 0.3, 0.7, 1, 2, 3, 5:

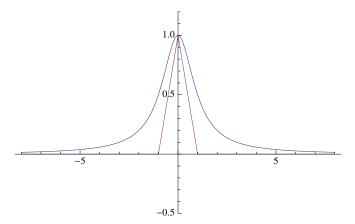


Hammer blow

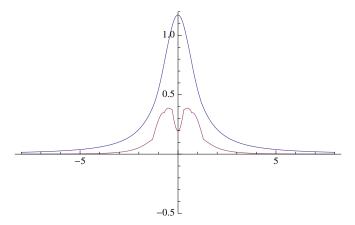
Initial conditions: f(x) = 0 and g(x) is a "rectangular impulse". Speed c = 1. 3D plot:



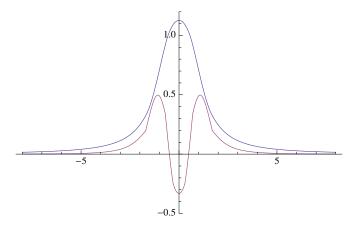
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. t = 0:



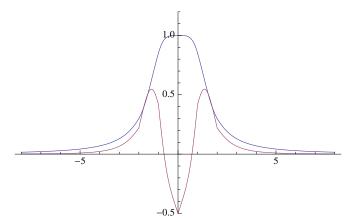
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 0.3:



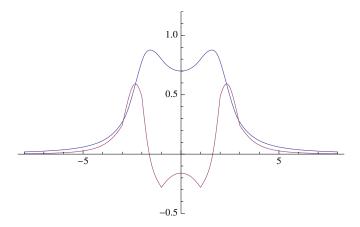
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 0.7:



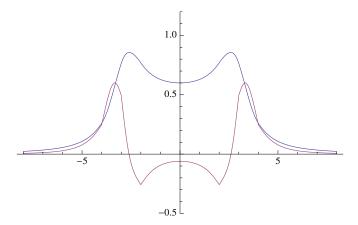
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 1:



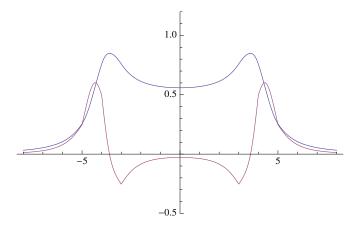
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 2:



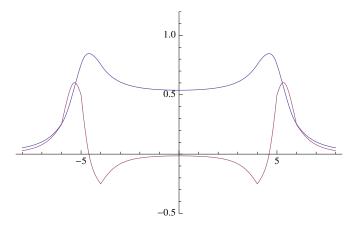
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 3:



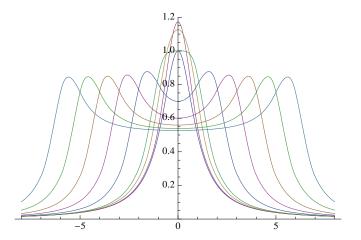
Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 4:



Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 5:

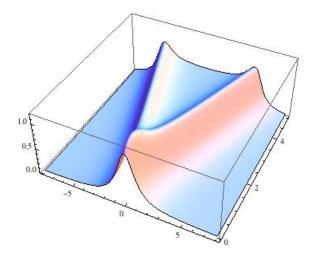


Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1. Time t = 0.3, 0.7, 1, 2, 3, 4, 5, 6:



Initial conditions: $f(x) = \frac{1}{1+x^2}$ and g(x) is a "tent" function. Speed c = 1.

3D plot:



From D'Alambert's formula

$$u(x,t) = \frac{1}{2}f(x+ct) + \frac{1}{2}f(x-ct) + \frac{1}{2c}\int_{x-ct}^{x+ct} g(s)ds,$$

we see that u(x, t) depends only on the initial data f = u and $g = u_t$ on the interval [x - ct, x + ct]. This defines the **domain of dependence**.

Conversely, the value of u and u_t at (x_0, t_0) affects the solution at (x, t) only if $x_0 - c(t - t_0) \le x \le x_0 + c(t - t_0)$. This defines the **range of influence** of the point (x_0, t_0) .

In particular, speed of propagation of information does not exceed c.