MATH 319 ASSIGNMENT 3

DUE THURSDAY MARCH 24

1. Use separation of variables to solve the heat conduction problem

$$u_t = u_{xx}, \qquad u(x,0) = f(x),$$

on the interval (0,1), with the boundary conditions $u(0,t) = \alpha$ and $u_x(1,t) = \beta$ for t > 0, where α and β are given constants. Give an explicit expression for the solution in the case $f(x) = \alpha + \frac{\beta}{2}x^2$.

2. Use separation of variables to solve

$$u_{tt} = u_{xx} - u,$$
 $u(x,0) = 0,$ $u_t(x,0) = 1 + \cos^3 x,$

on the interval $(0, \pi)$, with the homogeneous Dirichlet boundary conditions.

3. Let $\alpha \in (0, 2\pi)$ be given, and let $W_{\alpha} = \{(r, \phi) : 0 < r < 1, 0 < \phi < \alpha\}$ be a pie shaped domain with the central angle α , where (r, ϕ) are the polar coordinates. Use separation of variables to solve the Laplace problem

$$\Delta u = 0$$
,

on W_{α} , with the boundary conditions

$$u(r,0) = u(r,\alpha) = 0$$
, for $r \in [0,1)$, and $u(1,\phi) = f(\phi)$ for $\phi \in (0,\alpha)$,

where f is a given function. Give an explicit expression for u when $f(\phi) = \sin\left(\frac{\pi}{\alpha}\phi\right)$.

4. Let $\mathbb{D} = \{(x,y) : x^2 + y^2 < 1\}$ be the unit disk. Show that

$$\Delta u = u^3$$
 in \mathbb{D} , and $u = 0$ on $\partial \mathbb{D}$,

has no twice continuously differentiable solution other than $u \equiv 0$. (*Hint*: Δu is non-positive at the maximum of u. Another approach is to multiply the both sides of the equation by u and integrate.)

5. Let Ω be a 3-dimensional bounded domain with smooth boundary. Show that the eigenvalues of the Laplacian on Ω with homogeneous Neumann boundary condition cannot be positive. Show also that the eigenvalues of the Laplacian on Ω with homogeneous Dirichlet boundary condition are strictly negative. (*Hint* for the Dirichlet case: The Laplace equation has a unique solution with the homogeneous Dirichlet boundary condition.)

Date: Winter 2011.