MATH 319 ASSIGNMENT 2

DUE THURSDAY FEBRUARY 17

1. Find u(x, a) satisfying

$$xu_x + au_a = 0$$
, and $u(x,1) = f(x)$,

where f is a continuously differentiable function.

2. Find the general solution of

a)
$$u_{xx} + 6u_{xy} - 16u_{yy} = 0$$
,

b)
$$u_{xx} + 4u_{xy} + 4u_{yy} = 0$$
.

3. Reduce the following equations to canonical form:

a)
$$a^2u_{xx} + 2xau_{xa} + x^2u_{aa} = 0$$
,

b)
$$u_{xx} - 2xu_{xa} = 0$$
.

4. Derive the analogue of D'Alambert's formula for the solution of the Cauchy problem

$$u_{tt} - u_{xx} = \lambda u,$$
 $u(x,0) = f(x),$ $u_t(x,0) = g(x),$

where λ is a constant, and f and g are given functions.

5. Show that the general solution of the hyperbolic equation

$$u_{xx} - tu_{tt} - \frac{1}{2}u_t = 0,$$
 $(t > 0),$

has the form

$$u(x,t) = F(x + 2\sqrt{t}) + G(x - 2\sqrt{t}).$$

6. Let u(x, y, t) be the solution of the Cauchy problem

$$u_{tt} - c^2 u_{xx} - c^2 u_{yy} = 0,$$
 $u(x, y, 0) = f(x, y),$ $u_t(x, y, 0) = g(x, y),$

where c>0 is a constant, and f(x,y) and g(x,y) vanish for $x^2+y^2>r^2$ for some r>0. Show that the solution u(x,y,t) vanishes if $x^2+y^2-r^2>c^2t^2$.

7. Find all solutions of the heat equation $u_t = u_{xx}$ of the form

$$u(x,t) = \frac{1}{\sqrt{t}}v(\frac{x}{\sqrt{t}}).$$

8. Show that if u(x,t) is a solution of $u_t = u_{xx}$, then so is

$$v(x,t) = t^{-1/2}e^{-x^2/(4t)}u(x/t, -1/t).$$

Date: Winter 2011.

9. Let u(x,t) satisfy the heat equation for $x \in (0,1)$ and t > 0, the boundary conditions u(0,t) = u(1,t) = 0 for $t \ge 0$, and the initial condition u(x,0) = f(x) for $x \in [0,1]$ with f a continuously differentiable function. Show that

$$\int_0^1 |u(x,t)|^2 dx \le \int_0^1 |f(x)|^2 dx, \quad \text{for any} \quad t \ge 0.$$

(*Hint*: Use $2uu_t = (u^2)_t$ and $uu_{xx} = (uu_x)_x - (u_x)^2$.) Derive a uniqueness theorem for the above initial-boundary value problem.