
POWER SERIES SOLUTIONS

TSOGTGEREL GANTUMUR

Abstract. We introduce the power series solution method for second order linear differential
equations, and illustrate it by examples.
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1. Ordinary and singular points

Consider the differential equation

a(x)y′′ + b(x)y′ + c(x)y = 0, (1)

where a(x), b(x), and c(x) are polynomials, or equivalently,

y′′ + p(x)y′ + q(x)y = 0, (2)

where

p(x) =
b(x)

a(x)
, and q(x) =

c(x)

a(x)
. (3)

Note that this makes p(x) and q(x) rational functions. We call (1) the general form, and (2)
the normal or standard form of the same underlying equation.

We would like to look for a solution in the form of the power series

y(x) =
∞∑
k=0

ak(x− α)k, (4)

which is centred at the point α. It turns out that the success of such a power series approach
is strongly dependent on the behaviour of the coefficients p(x) and q(x) near the point α.

Definition 1. A point α ∈ C in the complex plane is called an ordinary point of (2) if the
functions p(z) and q(z) are continuous at z = α, that is, if the limits

lim
z→α

p(z), and lim
z→α

q(z), (5)

exist as finite complex numbers. If α is not ordinary, we call it a singular point of (2).

Remark 2. Since p(x) and q(x) are rational functions, there is no ambiguity in the meaning
of p(z) and q(z) for complex variable z. For example,

if p(x) =
2x2 + 1

3x2 − 2x+ 5
, then p(z) =

2z2 + 1

3z2 − 2z + 5
. (6)
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Example 3. Consider the equation

(x2 − 1)y′′ + (x3 − x2)y′ + (1− x)y = 0. (7)

Dividing the left hand side by x2 − 1, we have

(x2 − 1)y′′ + (x3 − x2)y′ + (1− x)y

x2 − 1
= y′′ +

x3 − x2
x2 − 1

y′ − x− 1

x2 − 1
y, (8)

which, after some simplifications, leads us to the normal form

y′′ + xy′ − 1

x+ 1
y = 0. (9)

Comparing this with (2), we identify the coefficients p(x) and q(x) as

p(x) = x, and q(x) = − 1

x+ 1
. (10)

The function p(z) = z is finite for all complex values of z, and q(z) = − 1
z+1 is finite for all

z ∈ C except at z = −1. In fact, we have |q(z)| → ∞ as z → −1. Therefore we conclude that
the only singular point of the equation (7) is at z = −1, and all other points in the complex
plane are ordinary points.

Example 4. Consider the equation

y′′ +
y

x2 − 2x+ 2
= 0. (11)

We identify the coefficients p(x) and q(x) as

p(x) = 0, and q(x) =
1

x2 − 2x+ 2
. (12)

Obviously, p(x) is not going to play any role in determining ordinary and singular points of
(11), so let us focus on the coefficient q(x). The singularities of q(z) are at the roots of the
quadratic equation

z2 − 2z + 2 = 0, (13)

which are

z1,2 = 1±
√

1− 2 = 1± i. (14)

The function q(z) is finite for all z ∈ C except at z = 1 ± i, and we have |q(z)| → ∞ as
z → 1 ± i. Therefore we conclude that the only singular points of the equation (11) are at
z = 1± i, and all other points in the complex plane are ordinary points.

Im z

Re z−1

Im z

Re z1

1

−1

Figure 1. The singular points of the equations (7) and (11).
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2. The fundamental theorem

We present the following theorem without proof, which forms the basis of power series
solutions near an ordinary point.

Theorem 5. If α ∈ R is an ordinary point of (2), then there are two linearly independent
solutions to (2), of the form

y(x) =
∞∑
k=0

ak(x− α)k, (15)

which converges (at least) in the interval (α−R,α+R), where R > 0 is the distance from α
to the nearest singular point of (2), in the complex plane.

Example 6. Consider the equation

(x2 − 1)y′′ + (x3 − x2)y′ + (1− x)y = 0. (16)

From Example 3, we know that its normal form is

y′′ + xy′ − 1

x+ 1
y = 0, . (17)

and that its only singular point is at z = −1.
Suppose that we want to find a solution of the form

y(x) =

∞∑
k=0

akx
k, (18)

that is, (15) with α = 0. The distance between α = 0 and the singular point at z = −1 is
R = 1. Hence Theorem 5 guarantees that there are two linearly independent solutions of the
form (23) that converges in the interval (0−1, 0+1) = (−1, 1). Geometrically, this procedure
of finding the convergence interval can be described as follows. We draw the largest possible
circle centred at α (considered as a point on the real line), that does not have any singular
point in its interior. Then the intersection of the circle’s interior with the real line (i.e., the
horizontal axis) gives the convergence interval. See Figure 2.

Now let us see how the convergence behaviour changes if we want to find a solution of the
form (15) with α = 1. In this case, we have R = 2, which is the distance between α = 1
and the singularity at z = −1. So Theorem 5 guarantees convergence of the series (15) in the
interval (−1, 3).

0−1

(a) α = 0

1−1

(b) α = 1

Figure 2. The convergence intervals described in Example 6.
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Example 7. Consider the equation

y′′ +
y

x2 − 2x+ 2
= 0. (19)

We have seen in Example 4 that the only singular points of this equation are z = 1± i.
Suppose that we want to find a solution of the form (15) with α = 0. The distance from

α = 0 to any of the singular points z = 1± i is R =
√

2, so Theorem 5 guarantees convergence
of the series (15) in the interval (−

√
2,
√

2).
To take another random example, if α = 1, then R = 1, hence the convergence interval

given by Theorem 5 is (0, 2).

0

1 + i

1− i

(a) α = 0

1

1 + i

1− i

(b) α = 1

Figure 3. The convergence intervals described in Example 7.

3. Formulation of the method

We shall now formulate a method to compute the coefficients ak of the power series solutions
(15) to the equation (1). For convenience, let us redisplay (1) here

a(x)y′′ + b(x)y′ + c(x)y = 0. (20)

First of all, note that we can always assume α = 0, which simplifies computations. Indeed,
introducing the new variables t = x − α and u(t) = y(t + α), we have u′(t) = y′(t + α) and
u′′(t) = y′′(t+ α). Therefore (20) is equivalent to

a(t+ α)u′′ + b(t+ α)u′ + c(t+ α)u = 0, (21)

and (15) becomes

u(t) = y(t+ α) =
∞∑
k=0

akt
k. (22)

This means that if we have a procedure to solve (20) in terms of the power series

y(x) =
∞∑
k=0

akx
k, (23)

then we will have a way to solve it in terms of the more general power series (15) with α 6= 0,
since we could just apply the same procedure to solve (21) in terms of (22).

For α = 0, we formulate the power series solution method as follows.

(i) Compute y′(x) and y′′(x) by differentiating (23) term by term, and substitute the re-
sulting series, together with (23), into (20) to write it as

∞∑
k=0

fkx
k = 0, (24)
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where the coefficients fk depend on the unknown coefficients a0, a1, . . . of y(x).
(ii) Impose the condition fk = 0 for all k = 0, 1, . . ., which give relations between the

unknown coefficients a0, a1, . . . of y(x).
(iii) Solve these relations to express the coefficients a2, a3, a4, . . . in terms of a0 and a1. Since

we are solving a second order equation, we expect there to be two arbitrary constants,
and we are assigning these roles to a0 and a1.

Remark 8. Note that the method is quite general, but considerably less so than the method
of integrating factors for first order linear equations

y′ + P (x)y = 0. (25)

Namely, while P (x) in (25) can be almost any function, a(x), b(x) and c(x) in (1) must be
polynomials (which can be relaxed to analyticity).

4. Examples

In this section, we illustrate the power series method on concrete examples.

Example 9. Let us test the power series method on the simple equation

y′ − 2y = 0. (26)

Differentiating the power series

y(x) =
∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + . . . , (27)

term by term, we get

y′(x) = 0 + a1 + 2a2x+ 3a3x
2 + 4a4x

3 + . . . . (28)

Writing (26) as y′ = 2y, and comparing (28) with

2y(x) = 2a0 + 2a1x+ 2a2x
2 + 2a3x

3 + . . . , (29)

we derive the relations

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, (30)

and so on, in general we have

(k + 1)ak+1 = 2ak, k = 0, 1, 2, . . . . (31)

Therefore we can express ak+1 in terms of ak as

ak+1 =
2

k + 1
ak, k = 0, 1, . . . . (32)

Let us compute the first few coefficients explicitly:

a1 =
2

1
a0, a2 =

2

2
a1 =

2 · 2
2 · 1a0, a3 =

2

3
a2 =

2 · 2 · 2
3 · 2 · 1a0, a4 =

2

4
a3 =

2 · 2 · 2 · 2
4 · 3 · 2 · 1a0. (33)

From here it is clear that

ak =
2k

k!
a0, (34)

and so

y(x) =

∞∑
k=0

2k

k!
a0x

k = a0

∞∑
k=0

(2x)k

k!
= a0e

2x. (35)

We see that the coefficient a0 is arbitrary, and all other coefficients ak depend on this choice.
This is of course consistent with the fact that the general solution of (26) must involve one
arbitrary constant.



6 TSOGTGEREL GANTUMUR

Example 10. We consider again the equation

y′ − 2y = 0. (36)

The problem is identical to the preceding example, but we will follow here a slightly different
path to illustrate certain techniques to work with series. We differentiate

y(x) =

∞∑
k=0

akx
k, (37)

under the sum sign, and get

y′(x) =
∞∑
k=0

kakx
k−1. (38)

Then we notice that the term corresponding to the index k = 0 is zero, and so we can start
the sum from the index k = 1, as

y′(x) =
∞∑
k=1

kakx
k−1. (39)

Finally, we introduce new summation variable n = k − 1, to write it as

y′(x) =

∞∑
n=0

(n+ 1)an+1x
n. (40)

Substituting (37) and (40) into the equation y′ − 2y = 0, we get

0 = y′(x)− 2y(x) =
∞∑
n=0

(n+ 1)an+1x
n − 2

∞∑
k=0

akx
k

=
∞∑
k=0

(k + 1)ak+1x
k − 2

∞∑
k=0

akx
k

=
∞∑
k=0

[(k + 1)ak+1 − 2ak]x
k,

where in the second line we renamed the summation index in the first sum in order to conve-
niently combine the terms of the two sums. This leads to

(k + 1)ak+1 − 2ak = 0, k = 0, 1, . . . , (41)

and the rest of the solution is the same as in the preceding example.

Example 11. Consider the second order equation

y′′ + y = 0, (42)

and we look for a solution in the form

y(x) =
∞∑
k=0

akx
k. (43)

Differentiating term by term, we get

y′(x) =
∞∑
k=0

kakx
k−1 =

∞∑
k=1

kakx
k−1 =

∞∑
n=0

(n+ 1)an+1x
n, (44)

where we have introduced n = k − 1. Differentiating again, we have

y′′(x) =

∞∑
n=0

n(n+ 1)an+1x
n−1 =

∞∑
n=1

n(n+ 1)an+1x
n−1 =

∞∑
`=0

(`+ 1)(`+ 2)a`+2x
`, (45)
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where we have introduced ` = n− 1. Substituting this into the equation y′′ + y = 0, we get

0 = y′′(x) + y(x) =
∞∑
`=0

(`+ 1)(`+ 2)a`+2x
` +

∞∑
k=0

akx
k

=
∞∑
k=0

(k + 1)(k + 2)ak+2x
k +

∞∑
k=0

akx
k

=
∞∑
k=0

[(k + 1)(k + 2)ak+2 + ak]x
k,

where in the second line we renamed the summation index in the first sum in order to conve-
niently combine the terms of the two sums. This leads to the relations

(k + 1)(k + 2)ak+2 + ak = 0, k = 0, 1, . . . , (46)

that is,

ak+2 = − ak
(k + 2)(k + 1)

, k = 0, 1, . . . . (47)

Let us apply it for k = 0, 2, 4, and get

a2 = − a0
2 · 1 , a4 = − a2

4 · 3 =
a0

4 · 3 · 2 · 1 , a6 = − a4
6 · 5 = − a0

6 · 5 · 4 · 3 · 2 · 1 . (48)

From here it is clear that for even indices k, that is, for k = 2n with n = 0, 1, 2, . . ., we have

a2n =
(−1)n

(2n)!
a0. (49)

Similarly, applying (47) for k = 1, 3, 5, we infer

a3 = − a1
3 · 2 , a5 = − a3

5 · 4 =
a1

5 · 4 · 3 · 2 , a7 = − a5
7 · 6 = − a1

7 · 6 · 5 · 4 · 3 · 2 , (50)

which implies that

a2n+1 =
(−1)n

(2n+ 1)!
a1, for n = 0, 1, 2, . . . . (51)

We have two formulas (49) and (51) for the general coefficient ak depending on the parity of
the index k. In order to use these formulas in

y(x) =
∞∑
k=0

akx
k, (52)

we first split the sum into two sums, so that one sum contains only even powers of x and the
other sum contains only odd powers of x, as

y(x) =

∞∑
k=0

akx
k =

∞∑
n=0

a2nx
2n +

∞∑
n=0

a2n+1x
2n+1. (53)

Now we can apply (49) and (51), to get

y(x) = a0

∞∑
n=0

(−1)n

(2n)!
x2n + a1

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = a0 cosx+ a1 sinx. (54)

Example 12. Consider the problem of solving

y′′ − xy = 0, (55)

in terms of the power series

y(x) =
∞∑
k=0

akx
k. (56)
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Recall from (45) that

y′′(x) =
∞∑
`=0

(`+ 1)(`+ 2)a`+2x
` = 2a2 + 2 · 3a3x+ 3 · 4a4x2 + 4 · 5a5x3 + . . . . (57)

On the other hand, we have

xy(x) =
∞∑
k=0

akx
k+1 = a0x+ a1x

2 + a2x
3 + . . . . (58)

Thinking of (55) as y′′ = xy, and comparing (57) with (58), we get the relations

2a2 = 0, 2 · 3a3 = a0, 3 · 4a4 = a1, 4 · 5a5 = a2, (59)

which are, of course, but a few of infinitely many relations. Nevertheless, they make it clear
that a2 = 0, and that

(n− 1)nan = an−3 or an =
an−3

n(n− 1)
, for n ≥ 3. (60)

In particular, we have a2 = a5 = a8 = . . . = 0, that is,

a2+3k = 0, for k = 0, 1, 2, . . . . (61)

To get some insight on the other coefficients, let us compute a few of them, as

a3 =
a0

3 · 2 , a4 =
a1

4 · 3 ,

a6 =
a3

6 · 5 =
a0

6 · 5 · 3 · 2 , a7 =
a4

7 · 6 =
a1

7 · 6 · 4 · 3 ,

a9 =
a6

9 · 8 =
a0

9 · 8 · 6 · 5 · 3 · 2 , a10 =
a7

10 · 9 =
a1

10 · 9 · 7 · 6 · 4 · 3 .
So we have

a3k =
a0

2 · 3 · 5 · 6 · · · (3k − 1) · (3k)
= a0

4 · 7 · 10 · · · (3k − 2)

(3k)!
, (62)

for k = 0, 1, 2, . . ., and

a3k+1 =
a1

3 · 4 · 6 · 7 · · · (3k) · (3k + 1)
= a1

2 · 5 · 8 · · · (3k − 1)

(3k + 1)!
, (63)

for k = 0, 1, 2, . . .. We can write the final solution as

y(x) = a0

∞∑
k=0

4 · 7 · · · (3k − 2)

(3k)!
x3k + a1

∞∑
k=0

2 · 5 · · · (3k − 1)

(3k + 1)!
x3k+1, (64)

which shows that we have 2 arbitrary constants. Let y0(x) be given by y(x) in (64) with
a0 = 1 and a1 = 0, and similarly, let y1(x) be given by y(x) with a0 = 0 and a1 = 1. Then
y0(x) and y1(x) are linearly independent, because y0(0) = 1 and y1(0) = 0.

Exercise 13. Find two linearly independent solutions of

y′′ + x2y′ = 0, (65)

in terms of the power series

y(x) =
∞∑
k=0

akx
k. (66)
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