
ORDINARY DIFFERENTIAL EQUATIONS: BASIC CONCEPTS

TSOGTGEREL GANTUMUR

Abstract. Some of the most basic concepts of ordinary differential equations are introduced
and illustrated by examples.
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1. What is an ordinary differential equation?

Roughly speaking, an ordinary differential equation (ODE) is an equation involving a func-
tion (of one variable) and its derivatives.

Examples of ODE’s are

y′ + y = 0,
dx

dt
+ x2t = sin t, and y′′ = x cos y. (1)

A solution of an ODE is a function that satisfies the equation. This is in contrast to
algebraic equations, such as x2 = 3 and x6 + 7x = 5, whose solutions are numbers.

Example 1. Let y(x) = e−x. Then we have

y′(x) = −e−x, and so y′(x) + y(x) = 0. (2)

So the function y(x) = e−x is a solution of the ODE y′ + y = 0. Typically, ODE’s have many
solutions: y(x) = 2e−x is also a solution of the ODE y′ + y = 0.

Example 2. The function x(t) = t2 is a solution to the ODE xx′′ + tx′ = 4t2.

When faced with an ODE, one may try to solve it explicitly, as was done in Example 1.
However, only very special types of ODE’s can be solved by formulas, so one needs to resort
to approximation methods, that can be used to solve ODE’s inexactly, and to qualitative
methods, that can be used to extract valuable information about the solution of an ODE
without actually solving it. In this course, we will focus mainly on techniques to explicitly
solve ODE’s, and only get a glimpse of approximation and qualitative methods. A large class
of approximation methods are studied in a numerical analysis course, and qualitative methods
are basically the content of a dynamical systems course.
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2. An example application: Falling bodies

ODE’s have a wide range of applications in sciences and in mathematics. In this section,
we will look at a simple application, and illustrate some important concepts along the way.

This example concerns the motion of a small body near Earth’s surface. We assume that
the body moves only in the vertical direction, and fix a coordinate system so that the y-axis
is pointing upward. If we denote by y(t) the y-coordinate of the particle at time moment t,
and assume that there is no air resistance, then Newton’s second law gives my′′(t) = −mg,
where m is the mass of the particle, and g ≈ 9.81m/s2 is the free fall acceleration near Earth’s
surface. Assuming m 6= 0, we get

y′′ = −g. (3)

We note in passing that the air resistance can be modelled by

my′′ = −mg − ky′, or my′′ = −mg − k(y′)2, (4)

depending on how fast the particle moves.
Now, it is easy to see that for any pair of numbers A and B, the function

y(t) = A+Bt− 1

2
gt2, (5)

is a solution of (3). Conversely, if y(t) is a solution of (3), then y(t) must be equal to (5) for
some value of the pair A and B. Expressions such as (5) are called general solutions, and they
usually involve free parameters such as A and B. By varying the values of the parameters,
one generates all possible solutions of the ODE. In contrast, a particular solution of an ODE
is simply a solution of the ODE. For example, y(t) = 1− 1

2gt
2 is a particular solution of (3).

Remark 3. Arbitrary constants A and B arise because the equation (3) is insensitive to
changing y(t) by y(t)+A+Bt for any pair of numbers A and B. In some sense, differentiating
twice in (3) “kills” two pieces of information. Without additional input, there is no way to
recover this information.

In practice, there are many ways to supply additional information about the solution y(t)
so that we can pin down only one solution from the large family of solutions given by (5).
One approach is to specify y(0) and y′(0), or more generally, to specify y(x0) and y′(x0) for
some x0. Such conditions are called initial conditions, and an ODE together with appropriate
initial conditions is called an initial value problem.

Example 4. Suppose that

y(0) = 10, and y′(0) = 0, (6)

and we want to find solutions of (3) satisfying these initial conditions. From (5) we have

y′(t) = B − gt, (7)

and hence y(0) = A and y′(0) = B. This immediately gives A = 10 and B = 0, so the only
solution of (3) satisfying (6) is

y(t) = 10− 1

2
gt2. (8)

Example 5. Consider the initial value problem
y′′ = −10,

y(1) = 10

y′(1) = 0.

(9)
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The general solution of the ODE y′′ = −10 is given by (5) with g = 10, that is, for any pair
of real numbers A and B, the function

y(t) = A+Bt− 5t2, (10)

satisfies y′′ = −10. From this and (7) with g = 10, we get y(1) = A+B−5 and y′(1) = B−10.
Imposing y′(1) = 0 on the latter gives B = 10, and plugging this into the former, and taking
into account the condition y(1) = 10, we infer A = 5. To conclude, the function

y(t) = 5 + 10t− 5t2, (11)

is a solution of the initial value problem (9). Moreover, this is the only solution, because we
know that any solution of y′′ = −10 must satisfy (10) for some real numbers A and B, and
by our derivation, the only function of the form (10) that satisfies the conditions y(1) = 10
and y′(1) = 0 is (11).

3. The simplest ordinary differential equation

Apart from the trivial ones, arguably the simplest ODE is

y′ = f(x), (12)

where f is a given function. For example, if f(x) = x2, then (12) says that the derivative of
the unknown function y(x) is x2, and we know that all such functions are given by

y(x) =
1

3
x3 + C, (13)

with an arbitrary constant C. Basically, solving (12) is the problem of integrating the given
function f . In this sense, solving ODE’s generalizes integration, much as solving a polynomial
equation anx

n + . . .+ a1x+ a0 = 0 generalizes taking roots k
√
x.
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Figure 1. The graphs of (13) for different values of C. Any one of these
curves represents a solution of (12) with f(x) = x2.

In what follows, we present two different chains of reasoning leading to the general solution
of the equation (12).

i) The equation (12) is equivalent to saying that y is an antiderivative (or a primitive) of
the function f . If F is an antiderivative of f , any other antiderivative of f is given by
F (x) + C, with some constant C. Hence, the general solution of (12) is

y(x) = F (x) + C, (14)
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where C is an arbitrary constant. Another way to write this is

y(x) =

ˆ
f(x) dx+ C. (15)

ii) The fundamental theorem of calculus tells us

y(x)− y(x0) =

ˆ x

x0

y′(t) dt, (16)

for any values x and x0. If y satisfies (12), then

y(x)− y(x0) =

ˆ x

x0

y′(t) dt =

ˆ x

x0

f(t) dt, (17)

or in other words,

y(x) = y(x0) +

ˆ x

x0

f(t) dt. (18)

This formula gives a way to recover the solution y, provided that we know the value
y(x0) for some x0. By choosing different values of y(x0), we can generate all possible
solutions of (12), hence (18) is the general solution of (12), with y(x0) playing the role
of an arbitrary constant. The relation between the formulas (18) and (14) is

y(x) = y(x0) +

ˆ x

x0

f(t) dt = y(x0) + F (x)− F (x0), (19)

where we have used the fundamental theorem of calculus, i.e., the fact thatˆ x

x0

f(t) dt = F (x)− F (x0). (20)

So the constant C in (14) is equal to y(x0) − F (x0). Note that the meaning of the
constant C in (14) is a priori not clear, whereas the meaning of the constant y(x0) in
(18) is obviously the value of the unknown solution at the chosen point x0. Thus, the
formula (18) may be handy if we want to impose the initial condition y(x0) = a.

Example 6. Let us reconsider the example

y′ = x2. (21)

Pick F (x) = 1
3x

3 as an antiderivative of x2. Then the first approach gives

y(x) =
1

3
x3 + C, (22)

as the general solution. The second approach gives

y(x) = y(x0) +

ˆ x

x0

x2 dx = y(x0) +
1

3
(x3 − x30), (23)

where x0 is understood to be a fixed number.

Example 7. Consider the initial value problem{
y′ = x2,

y(1) = 0.
(24)

We know that the general solution of y′ = x2 is given by (22), or alternatively, by (23). The
formula (22) implies y(1) = 1

3 + C, and so C = −1
3 by the initial condition y(1) = 0. Hence

the (one and only one) solution to the initial value problem (24) is

y(x) =
1

3
(x3 − 1). (25)

Alternatively, we could have derived this solution by putting x0 = 1 and y(1) = 0 into (23).
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Figure 2. The graphs of y(x) = 1
3x

3 + C for different values of C. Any

one of these curves represents a solution of y′ = x2. Among those solutions,
y(x) = 1

3(x3 − 1) is the only one that satisfies the initial condition y(1) = 0,
which is represented by the thick curve.

Example 8. The general solution to

y′ = e−x
2
, (26)

is given by

y(x) =

ˆ
e−x

2
dx+ C =

√
π

2
erf(x) + C. (27)

Here erf(x) is called the error function, and it is defined by

erf(x) =
2√
π

ˆ x

0
e−t

2
dt. (28)

This function is simply defined by the integral we are trying to compute, because the anti-

derivative of e−x
2

cannot be written in terms of a finite combination of elementary functions.
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Figure 3. The graphs of the error function erf(x) and the sine integral Si(x).

Example 9. Similarly, the general solution to

y′ =
sinx

x
, (29)

can be written as

y(x) = y(0) +

ˆ x

0

sin t

t
dt = y(0) + Si(x), (30)
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where Si(x) is called the sine integral, which is defined by

Si(x) =

ˆ x

0

sin t

t
dt. (31)

Again, the function sinx
x is not integrable in terms of elementary functions.

4. Functions

To minimize any terminology confusion that may arise later in the course, in the rest of
these notes we want to record precise definitions of some of the most fundamental concepts.
We start by reviewing the concept of a function.

Definition 10. Let U and V be sets, and suppose that to each element x ∈ U , there assigned
one and only one element y ∈ V , denoted by y = f(x). We call such an assignment a function
with domain U and range V , and write f : U → V .

Note that in order to fully specify a function, one must supply the domain U , the range V ,
and the assignment rule f .

Remark 11. In this course, we will mostly be concerned with functions f : I → R, where I is
an interval, such as I = (a, b), I = [a, b], I = [0, 1), I = (0,∞) and I = (−∞, 1).

One can think of a function f : (a, b)→ R (with a < b) as an infinite table

x f(x)
. . . . . .

Clearly, it is not feasible to provide or comprehend such tables. In the following, we list
some practical methods to describe functions and illustrate them by examples.

i) We can give a function by an explicit formula. Example are

f(x) = sinx, and f(x) = 4x2 + ex. (32)

In each case, U = V = R is implicitly assumed. However, one must note that the following
functions are different, because their domains are different:
• f : (0, 1)→ R given by f(x) = x2.
• f : (1, 2)→ R given by f(x) = x2.

So are the following functions:
• f : (0,∞)→ R given by f(x) = 1

x .

• f : (−∞, 0)→ R given by f(x) = 1
x .

• f : (−∞, 0) ∪ (0,∞)→ R given by f(x) = 1
x .

ii) We can define a function piece by piece, as in

θ(x) =

{
0 for x ≤ 0,

1 for x > 0,
(33)

which is called the Heaviside step function, and

f(x) =

{
0 for x ≤ 0,

x2 for x ≥ 0.
(34)

In both cases, U = V = R is implicit.
As another example, take

f(x) =

{
1
x for x 6= 0,

0 for x = 0.
(35)

This is different than g(x) = 1
x , as the domain of f is R.
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iii) We can give a function implicitly, by its properties. Examples and non-examples:
• f(x) = y where x2 + y2 = 0 and y > 0. Here U = (−1, 1) is implicit.
• f(x) = y where x2 + y2 = 0. This is a non-example, because for a given x, say from

the interval (−1, 1), there are two different y that satisfy x2 + y2 = 0.
• f satisfies f ′(x) = sinx and f(0) = 0.
• f satisfies f ′(x) = sinx. This is a non-example, because for a given x, the condition
f ′(x) = sinx does not determine a unique value f(x).

Remark 12. When we give a function implicitly, we must ensure that the conditions define a
unique value f(x) for each x from the intended domain.
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Figure 4. The graphs of the Heaviside theta function θ(x) given by (33), and
the function f(x) given by (34).

5. Ordinary differential equations and initial value problems

In this section, we make precise some notions related to ordinary differential equations,
initial value problems, and their solutions.

Definition 13. An ordinary differential equation (ODE) is an equation of the form

F (x, y, y′, . . . , y(n)) = 0, (36)

where F is a given function of n+2 variables. Here x and y are called the independent variable
and the dependent variable, respectively. If the derivative y(n) genuinely appears in (36), then
(36) is called an n-th order ODE.

To clarify what we mean by the order of an ODE, the equation y′ + y = 0 is a first order
ODE, even though one may write it as 0 · y′′ + y′ + y = 0. The order of an ODE is obviously
an important characteristic of that ODE.

Definition 14. Given an interval I, a solution (or a particular solution) of (36) on the interval
I is a function g : I → R satisfying

F (x, g(x), g′(x), . . . , g(n)(x)) = 0, for all x ∈ I. (37)

This definition makes it clear that when one talks about a solution of an ODE, one must
keep in mind that there is also an interval is involved. It is best if one states the interval
explicitly every time a solution is considered.

Example 15. Consider the ODE

y′ =
1

x
. (38)

The function g : (0,∞) → R defined by g(x) = log x is a solution of (38) on the interval
(0,∞). Also, the function g : (−∞, 0)→ R defined by g(x) = log(−x) is a solution of (38) on
the interval (−∞, 0).
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Remark 16. One can say that log |x| is a solution to (38) on (−∞, 0) ∪ (0,∞), but we will
almost exclusively consider solutions defined over an interval.

More generally, one can define systems of ODE’s and their solutions. For instance, the
general form of systems of two first order equations is

F1(x, y1, y2, y
′
1, y
′
2) = 0, F2(x, y1, y2, y

′
1, y
′
2) = 0, (39)

where F1 and F2 are given functions of 5 variables. A solution of such a system would be a
pair of functions y1 and y2 (or equivalently, a function with R2 as its range).

Example 17. The following is a system of first order ODE’s:{
y′1 = −y2,
y′2 = y1.

(40)

To write down a solution to this system, observe that the vector (−y2, y1) is exactly the vector
(y1, y2) rotated by 90 degrees counterclockwise. Now, thinking of (y1(t), y2(t)) as a vector in
the plane R2, with its tip at (y1(t), y2(t)) and the base at the origin (0, 0), the system (40)
tells us that the velocity of the tip of the vector is directed perpendicularly to the vector itself.
It is thus intuitively clear that if we start with some vector, and evolve it according to (40),
then the tip of the vector would be tracing a circle centred at the origin. This leads us to the
following guess {

y1(t) = A cos(kt+ c),

y2(t) = A sin(kt+ c),
(41)

where we assume that A, k and c are constants. Such a guess, that fixes a general form of the
solution but leaves some parameters free, is called an ansatz. Note that there is no a priori
guarantee that our guess would work. To check if it works, we differentiate (41), and get

y′1(t) = −Ak sin(kt+ c), and y′2(t) = Ak cos(kt+ c). (42)

This shows that (41) is in fact a solution of (40), provided that we choose k = 1.
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Figure 5. The velocity field and a solution trajectory for the system (40).
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Having dealt with ODE’s, we now turn to initial value problems.

Definition 18. An initial value problem (IVP) is given by

F (x, y, y′, . . . , y(n)) = 0,

y(x0) = c0,

y′(x0) = c1,

. . .

y(n−1)(x0) = cn−1,

(43)

where F is a given function of n+ 2 variables, and c0, c1, . . . , cn−1 and x0 are given numbers.

Definition 19. Let I be an interval, and let x0 be a point on I. Then a solution of the initial
value problem (43) on the interval I is a function g : I → R satisfying

F (x, g(x), g′(x), . . . , g(n)(x)) = 0, for all x in the interior of I, (44)

and

g(x0) = c0, g′(x0) = c1, . . . , g(n−1)(x0) = cn−1. (45)

Recall that the interior of an interval I is the largest open interval contained in I. For
example, (0, 1) is the interior of any of the intervals (0, 1), [0, 1), and [0, 1].

Example 20. Consider the initial value problem{
y′ = θ(x),

y(0) = 1,
(46)

where θ is the Heaviside step function defined in (33), and suppose that we are asked to solve
this problem on the interval [0,∞), i.e., for x ≥ 0. In order to solve it, first we look at the
case x > 0. Since θ(x) = 1 for x > 0, we have y′(x) = 1, which gives y(x) = x + C for an
arbitrary constant. Now, the function y(x) = x+C is defined not only for x > 0 but also for
all x ∈ R. In particular, we can talk about y(0) and hence can impose the initial condition
y(0) = 1, resulting in the realization that C = 1. We conclude that

y(x) = x+ 1, (47)

is a solution of the initial value problem (46) on the interval [0,∞). Note that y(0) = 1
and that y′(x) = 1 for x > 0. It is not necessary to ensure y′(x) = θ(x) at x = 0, because
Definition 19 requires the ODE be satisfied only in the interior of [0,∞), which is (0,∞).

6. Linearity and the superposition principle

Linear differential equations form the most important class of ODE’s. Because of their
relative simplicity, a very satisfactory theory can be developed for linear differential equations.
They have rich applications, and most importantly, the theory of linear differential equations
serves as a model as well as a firm basis for studying nonlinear differential equations.

Definition 21. An n-th order linear differential equation is an ODE of the form

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = f, (48)

where a0, . . . , an and f are given functions, with an not identically zero. If f is identically
zero, that is, if the equation is of the form

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = 0, (49)

then the ODE is said to be homogeneous, and otherwise it is said to be inhomogeneous.
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If an equation is not linear, then we say it is nonlinear. For example, y′ + y2 = 0 and
(y′)2 + x cos y = 1 are nonlinear ODE’s.

Definition 22. Suppose that all solutions of (48) on an interval I can be written as

y(x) = g0(x) +A1g1(x) + . . .+Angn(x), (50)

where g0, g1, . . . , gn are (fixed) functions defined on I, and A1, . . . , An are arbitrary constants.
Then the expression (50) is called the general solution of the ODE (48) on I.

More precisely, if all solutions of (48) on I form the set

{g0 +A1g1 + . . .+Angn : A1, . . . , An ∈ R}, (51)

for some functions g0, g1, . . . , gn : I → R, then (50) is called the general solution of (48) on I.

Remark 23. A general solution is a collection of functions, and it is not a single function
(unless in some trivial cases). Even though the set notation (51) is more appropriate in this
case, it is traditional to write the general solution in the form (50) and declare that the
constants A1, . . . , An are “arbitrary”. What this means is the following.

• When we fix a certain value for each of A1, . . . , An, the expression (50) produces a
function. Since A1, . . . , An do not depend on x, they are constants.
• Each of A1, . . . , An can have any real number as its value, and as they take all possible

combinations of their values, the expression (50) produces all possible solutions of the
ODE (48). In this sense, the constants A1, . . . , An are arbitrary.

Remark 24. General solutions can be defined for nonlinear equations, but we will talk about
general solutions mostly in the context of linear equations.

When presented with Definition 22 and especially the formula (50), a natural question that
might come to one’s mind is: Why do we expect that the general solution depends on the
constants A1 etc. in this way? Why not in some other way, for instance, as in y(x) = eA1x?
The answer lies in what is called the superposition principle, that is unquestionably the most
important property of linear equations.

Let us make a preliminary observation. If g(x) is a solution of the homogeneous equation
(49), then it obvious that for any constant C, the function y(x) = Cg(x) is also a solution.
The superposition principle for the homogeneous equation (49) says that the sum of any two
solutions is again a solution. In light of the observation we have just made, this means that
a linear combination of any two solutions is again a solution.

Theorem 25 (Superposition principle for homogeneous equations). Suppose that y1 and y2
are solutions of the homogeneous equation (49) on some interval I. Then for any real numbers
C1 and C2, the function

y(x) = C1y1(x) + C2y2(x), (52)

is also a solution of (49) on I.

Proof. We will prove it only for the special case n = 1, since the general case involves exactly
the same arguments and only requires more writing. Let us start by writing out what it means
for y1 and y2 to be solutions of (49) on I:

a1(x)y′1(x) + a0(x)y1(x) = 0, a1(x)y′2(x) + a0(x)y2(x) = 0, x ∈ I. (53)

Let us multiply the first equation by C1 and the second equation by C2, and sum the resulting
two equations. After some rearranging, this gives

a1(x)[C1y
′
1(x) + C2y

′
2(x)] + a0(x)[C1y1(x) + C2y2(x)] = 0, x ∈ I. (54)

Finally, taking into account the definition (52), and the related fact that y′(x) = C1y
′
1(x) +

C2y
′
2(x), we conclude

a1(x)y′(x) + a0(x)y(x) = 0, x ∈ I, (55)
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which is what we wanted to prove. �

Example 26. Consider the second order homogeneous linear differential equation

y′′ + y = 0. (56)

It is easy to check that both y1(x) = sinx and y2(x) = cosx are solutions of this equation
on R. Then by the superposition principle for homogeneous equations (Theorem 25), for any
constants A and B, the function

y(x) = A sinx+B cosx, (57)

is a solution of y′′ + y = 0 on R.

The superposition principle in the general case (48) says that one can add a solution of
the homogeneous equation (49) to a solution of the general equation (48), and obtain another
solution of the general equation (48).

Theorem 27 (Superposition principle). Suppose that y∗ is a solution of (48) on some interval
I, and that y0 is a solution of the homogeneous equation (49) on the same interval I. Then
for any real number C, the function

y(x) = y∗(x) + Cy0(x), (58)

is a solution of (48) on I.

Proof. Again, we will only prove the special case n = 1. The hypotheses of the theorem give

a1(x)y′∗(x) + a0(x)y∗(x) = f(x), a1(x)y′0(x) + a0(x)y0(x) = 0, x ∈ I. (59)

If we multiply the second equation by C and add the result to the first equation, we get

a1(x)[y′∗(x) + Cy′0(x)] + a0(x)[y∗(x) + Cy0(x)] = 0, x ∈ I. (60)

Taking into account the definition (58), and the fact that y′(x) = y′∗(x) + Cy′0(x), we infer

a1(x)y′(x) + a0(x)y(x) = f(x), x ∈ I, (61)

which completes the proof. �

Example 28. Consider the second order inhomogeneous linear differential equation

y′′ + y = 2ex. (62)

It is easy to guess a particular solution: y∗(x) = ex. The corresponding homogeneous equation
is y′′ + y = 0, which has y0(x) = sinx as one of its solutions on R. Then the superposition
principle (Theorem 27) says that for any constant A, the function

y(x) = ex +A sinx, (63)

is a solution to (62) on R.

We have the following converse to the superposition principle.

Theorem 29. Suppose that y1 and y2 are solutions of (48) on some interval I. Then their
difference y(x) = y1(x)− y2(x) is a solution of the homogeneous equation (49) on I.

Consequently, if y∗ is a particular solution of (48) on I, and if y0 is the general solution
of the homogeneous equation (49) on I, then the general solution of (48) on I is given by

y(x) = y∗(x) + y0(x), x ∈ I. (64)
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Proof. We will only prove the special case n = 1. We have

a1(x)y′1(x) + a0(x)y1(x) = f(x), a1(x)y′2(x) + a0(x)y2(x) = f(x), x ∈ I. (65)

Subtracting the second equation from the first. we get

a1(x)[y′1(x)− y′2(x)] + a0(x)[y1(x)− y2(x)] = 0, x ∈ I. (66)

This shows that y1 − y2 is a solution of the homogeneous equation (49) on I.
The second statement is straightforward. Suppose that y∗ is a particular solution of (48)

on I. If y is any solution of (48) on I, then we have y = y∗ + g for some solution g of the
homogeneous equation (49) on I. Conversely, if g is any solution of the homogeneous equation
(49) on I, then by the superposition principle, y = y∗ + g is a solution of (48) on I. �

The second part of the preceding theorem is so useful that it is worth reiterating: In order
to find the general solution of an inhomogeneous (linear) equation, one just needs to find

• the general solution of the corresponding homogeneous equation, and
• a particular solution of the inhomogeneous equation.

So it basically reduces the task of solving an inhomogeneous equation into that of solving the
corresponding homogeneous equation.

Example 30. Consider the first order inhomogeneous linear differential equation

xy′ + y = 2x. (67)

We guess one particular solution: y∗(x) = x, and try to find the general solution to the
corresponding homogeneous equation xy′ + y = 0. We notice that (xy)′ = xy′ + y, and by
integration of (xy)′ = 0, we get

xy(x) = C, (68)

where C is an arbitrary constant. So the general solution of the homogeneous equation
xy′ + y = 0 is y(x) = C

x , and by the second part of Theorem 29, the general solution of the

inhomogeneous equation (67) is y(x) = x+ C
x , where C is an arbitrary constant.

Theorem 29, together with the superposition principle for homogeneous equations and
the heuristic that the general solution of an n-th order equation should involve n arbitrary
constants, gives a strong indication that the general solution of (48) must be of the form (50).
We will come back to this question and perform a finer analysis later in the course.
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