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1. Laurent series

Let Dr,R = {z ∈ C : r < |z| < R} be an annulus centered at 0 with 0 ≤ r < R ≤ ∞, and
consider a function f ∈ O(Dr,R). Then for r < ρ < σ < R and ζ ∈ Dρ,σ the Cauchy integral
formula gives

f(ζ) =
1

2πi

∫
∂Dσ

f(z)dz

z − ζ
− 1

2πi

∫
∂Dρ

f(z)dz

z − ζ
. (1)

Proceeding as in the proof of the Cauchy-Taylor theorem, the first term on the right hand
side can be written as

f+(ζ) :=
1

2πi

∞∑
n=0

ζn
∫
∂Dσ

f(z)dz

zn+1
, (2)

with the series converging in Dσ, so in particular f+ ∈ O(Dσ). Note that f+ does not depend
on σ, as long as r < σ < R, because the integrals∫

∂Dσ

f(z)dz

zn+1
, (3)

are independent of σ ∈ (r,R). Moreover, since σ < R can be arbitrarily close to R, we
conclude that f+ ∈ O(DR).

Similarly, the last term in (1) can be rewritten as

f−(ζ) =
1

2πi

∫
∂Dρ

f(z)dz

ζ − z
=

1

2πi

∫
∂Dρ

( ∞∑
n=0

f(z)zn

ζn+1

)
dz, (4)

where we have used

1

ζ − z
=

1

ζ
· 1

1− z/ζ
=

1

ζ

(
1 +

z

ζ
+ . . .

)
=

∞∑
n=0

zn

ζn+1
. (5)

Each term in the series under integral in (4) can be estimated as∣∣∣∣f(z)zn

ζn+1

∣∣∣∣ ≤ 1

|ζ|
·
(
ρ

|ζ|

)n
·max
|z|=ρ

|f(z)|, (6)
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so as a function of z, the series converges uniformly in ∂Dρ, as long as |ζ| > ρ. Therefore we
can interchange the integral with the sum, resulting in

f−(ζ) =
1

2πi

∞∑
n=0

1

ζn+1

∫
∂Dρ

f(z)zndz =
1

2πi

∞∑
n=1

ζ−n
∫
∂Dρ

f(z)zn+1dz, |ζ| > ρ. (7)

Observe that the power series

g(w) =
1

2πi

∞∑
n=1

wn
∫
∂Dρ

f(z)zn+1dz, (8)

converges for |w| < 1
ρ , because the individual term of the series satisfies∣∣∣∣∣wn
∫
∂Dρ

f(z)zn+1dz

∣∣∣∣∣ ≤ 2πρ(ρ|w|)n ·max
|z|=ρ

|f(z)|, n ≥ 1,

implying that g ∈ O(D1/ρ). This means that f−(ζ) = g(1ζ ) is holomorphic in {|ζ| > ρ}, and

that the series (7) converges for |ζ| > ρ. Since the integrals∫
∂Dρ

f(z)zn+1dz, (9)

are independent of ρ ∈ (r,R), the function f− does not depend on ρ ∈ (r,R). Moreover, since
ρ > r can be arbitrarily close to r, we conclude that f− ∈ O(Dr,∞).

Finally, setting σ = ρ in (2), we can write the two series together as

f(ζ) = f+(ζ) + f−(ζ) =
1

2πi

∞∑
n=−∞

ζn
∫
∂Dρ

f(z)dz

zn+1
.

This series is called the Laurent series of f , and the decomposition f = f+ + f− is called the
Laurent decomposition of f . In the Laurent decomposition, f− is said to be the principal part
of f , and f+ the regular part of f . We summarize this discussion in the following theorem.

Theorem 1. Let A = Dr,R(c) be an annulus centered at c ∈ C with 0 ≤ r < R ≤ ∞.
Then any f ∈ O(A) has a unique decomposition f = f+ + f− such that f+ ∈ O(DR(c)) and
f− ∈ O(Dr,∞(c)) with f−(z)→ 0 as |z| → ∞.

Proof. The existence of the Laurent decomposition has been demonstrated. For uniqueness,
let f = g+ + g− be another such decomposition of f . Then we have f+− g+ = g−− f− in A,
and so h defined as h = f+ − g+ in DR and h = g− − f− in Dr,∞ is an entire function. But
g− − f− goes to 0 at ∞, hence by Liouville’s theorem h ≡ 0. �

2. Isolated singularities

We call the set D×r (c) = {z ∈ C : 0 < |z − c| < r} the punctured disk centred at c with
radius r. If c = 0, we simply write D×r = D×r (0), and if in addition, r = 1, then D× = D×1 (0).
Let f ∈ O(D×r (c)) with some r > 0. Then we have the Laurent series expansion

f(z) =
∑
n∈Z

an(z − c)n, z ∈ D×r (c). (10)

The point c is called an isolated singularity of f .
Now we introduce the notation

Ord(f, c) = min{n ∈ Z : an 6= 0}, (11)

with Ord(f, c) =∞ if all an = 0, and Ord(f, c) = −∞ if there are infinitely many n < 0 with
an 6= 0. Note that if Ord(f, c) ≥ 0 then upon defining f(c) = a0, one has f ∈ O(Dr(c)). This
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process of extending the definition of f to include c in the domain of f so that the resulting
function is holomorphic, is called removing the singularity at c. In what follows, we will often
implicitly assume that all singularities that can be removed have been removed, and so in
particular function values at “removable singularity” points will be discussed without ever
mentioning the process of removing those singularities. For example, note that Ord(f, c) > 0
is equivalent to saying that c is a zero of order k = Ord(f, c). We will see that one cannot
remove the singularity at c if Ord(f, c) < 0.

Definition 2. In this setting, c is called

• a removable singularity if Ord(f, c) ≥ 0;
• a pole of order N = −Ord(f, c) if 0 > Ord(f, c) > −∞;
• an essential singularity if Ord(f, c) = −∞.

We say c is a simple pole if Ord(f, c) = −1, and likewise a double pole if Ord(f, c) = −2.

Sometimes very useful is the trivial fact that the three cases in the preceding definition are
mutually exclusive and exhaust all possibilities. It is clear that if f has a removable singularity
at c then f is bounded in a neighbourhood of c. The converse statement is also true, and
called Riemann’s removable singularity theorem, or Riemann’s continuation theorem.

Theorem 3 (Riemann 1851). If f ∈ O(D×r (c)) and f is bounded in D×r (c), then c is a
removable singularity.

Proof. Assume c = 0, and suppose that |f | ≤ M in D×r for some constant M ∈ R. The
Laurent series coefficients of f are given by

an =
1

2πi

∫
∂Dρ

f(z)dz

zn+1
,

where ρ ∈ (0, r). These can be estimated as

|an| ≤
1

2π
· 2πρ · ρ−n−1M = Mρ−n → 0 as ρ→ 0, for n < 0,

which shows that an = 0 for all n < 0. �

We say that a function is holomorphic at a point if the function is holomorphic in an open
neighbourhood of that point.

Theorem 4 (Characterization of poles). If f ∈ O(D×r (c)) then the following are equivalent:

(a) c is a pole of f of order N .
(b) g(z) = (z − c)Nf(z) is holomorphic at c with g(c) 6= 0.
(c) 1/f is holomorphic at c and has a zero of order N at c.

Proof. If (a) is satisfied then from the Laurent series expansion of f we have

g(z) = (z − c)Nf(z) =

∞∑
n=0

an−N (z − c)n, with g(c) = a−N 6= 0,

implying (b).

If (b) is true, then we have
1

f(z)
=

(z − c)N

g(z)
and g is holomorphic and nonzero at c, so

1

f
is holomorphic and has a zero of order N at c.

Now (c) implies that
1

f(z)
=

(z − c)N

h(z)
with some h holomorphic and nonzero at c. Then

by inverting this relation and expanding h in its Taylor series around c, we get (a). �

From (c) of this theorem it follows that |f | approaches∞ near the poles. The converse can
also be proved with a little effort.
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Corollary 5. If f ∈ O(D×r (c)) and |f(z)| → ∞ as z → c then c is a pole of f .

Proof. Firstly, we infer that f is zero-free on D×ε (c) for some ε > 0. Hence 1/f ∈ O(D×ε (c))
and since it is also bounded, by the removable singularity theorem we have 1/f ∈ O(Dε(c)).
Moreover, 1/f is zero at c, which therefore is a pole of f by (c) of the preceding theorem. �

The following result is called the Casorati-Weierstrass theorem, although it appears that
Charles Briot (1817–1882) and Claude Bouquet (1819–1885) published it in 1859. The proof
by Felice Casorati (1835–1890) appeared in 1868, and then Weierstass proved it in 1876. In
addition, Yulian Sokhotsky (1842–1927) included this theorem in his Master’s thesis of 1868.

Theorem 6. Let f ∈ O(D×r (c)) and let c be an essential singularity of f . Then for any
α ∈ C, there is a sequence zn → c such that f(zn) → α. In other words, f(D×ε (c)) is dense
in C for any ε > 0.

Proof. Suppose for the sake of contradiction that there are α ∈ C and positive numbers δ,
and ε such that |f(z) − α| ≥ δ for any z ∈ D×ε (c). Then h(z) = 1/(f(z) − α) is bounded in
D×ε (c), hence holomorphic on Dε(c). Unravelling, we have f(z) = α + 1/h(z), and since h is
not identically zero, Ord(f, c) > −∞. �

The converse of the Casorati-Weierstrass theorem also holds, because if f has the property
as in the conclusion of this theorem at c, then c is neither a removable singularity (in which
case f would have to be bounded) nor a pole (in which case |f | would have to have the limit
∞), so it must be an essential singularity. A similar exclusion of both a removable and an
essential singularity gives an alternative proof of Corollary 5.

3. Residues and indices

We start with a definition.

Definition 7. If f ∈ O(D×r (c)) with r > 0, then with ε ∈ (0, r)

Res(f, c) =
1

2πi

∫
∂Dε(c)

f(z)dz, (12)

is called the residue of f at c. Note that the residue does not depend on the value of ε ∈ (0, r),
so in particular one could take the limit ε→ 0.

We have a new tool to examine functions such as f in this definition: The Laurent series
expansion. So employing this new tool right away we have the series

f(z) =
∞∑

n=−∞
an(z − c)n, z ∈ D×r (c), (13)

which in particular converges uniformly in ∂Dε(c) for ε ∈ (0, r). This means that integration
of f over ∂Dε(c) can be interchanged with the series summation, giving

Res(f, c) =
1

2πi

∞∑
n=−∞

an

∫
∂Dε(c)

(z − c)ndz = a−1, (14)

where the integral of (z − c)n vanishes except for n = −1 because of integrability. We collect
some useful properties of residue in the following lemma.

Lemma 8. Let c ∈ C, and let f, g ∈ O(D×r (c)) with r > 0.

(a) If a−1 is the (−1)st coefficient in the Laurent series of f around c, then

Res(f, c) = a−1. (15)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Briot.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Bouquet.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Casorati.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Sokhotsky.html
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(b) If Ord(f, c) ≥ 0 (removable singularity) then

Res(f, c) = 0. (16)

(c) If Ord(f, c) ≥ −1 (simple pole at worst) then

Res(f, c) = lim
z→c

(z − c)f(z). (17)

(d) If Ord(f, c) = 0 and Ord(g, c) = 1, then

Res
(f
g
, c
)

=
f(c)

g′(c)
. (18)

(e) Res(·, c) is C-linear in O(D×r (c)).

Proof. Part (a) has been proved above, and (b), (c) and (e) are obvious. Then (d) follows
from (c) as

Res
(f
g
, c
)

= lim
z→c

(z − c)f(z)

g(z)
= lim

z→c

(z − c)f(z)

g(z)− g(c)
=
f(c)

g′(c)
, (19)

since g(c) = 0 and g′(c) 6= 0 by Ord(g, c) = 1. �

Before proving the main result of this section, we need the following definition.

Definition 9. For a loop γ ∈ C 1
pw(S1,C) that does not pass through c ∈ C, the index (or the

winding number) of γ with respect to c is defined to be

Ind(γ, c) =
1

2πi
〈Kc, γ〉 =

1

2πi

∫
γ

dz

z − c
, (20)

where we have introduced the Cauchy kernel Kc(z) = 1
z−c based at c.

Theorem 10 (Residue theorem). Let Ω ⊂ C be an open set, and let z1, . . . , zm ∈ Ω. Suppose
that γ ∈ C 1

pw(S1,Ω) is null-homotopic in Ω, and does not pass through any of the points
z1, . . . , zm. Then we have

〈f, γ〉 = 2πi
m∑
j=1

Ind(γ, zj) Res(f, zj), for f ∈ O(Ω \ {z1, . . . , zm}). (21)

Proof. Let ε > 0 be such that the disks Dε(zj) are pairwise disjoint and disjoint from the
boundary ∂Ω. Let

f(z) =
∞∑

n=−∞
aj,n(z − zj)n, z ∈ D×ε (zj), (22)

be the Laurent series of f around zj , and let

f−j (z) =

−∞∑
n=−1

aj,n(z − zj)n, z ∈ D×ε (zj), (23)

be the principal part of f at zj . We have f−j ∈ O(C \ {zj}) and f − f−j ∈ O(Dε(zj)), so that

f−f−1 −. . .−f−m ∈ O(Dε(zj)) for each j. We also have f−f−1 −. . .−f−m ∈ O(Ω\{z1, . . . , zm}),
which then implies that f − f−1 − . . .− f−m ∈ O(Ω). Since γ is null-homologous in Ω, Cauchy’s
theorem gives

〈f, γ〉 =
m∑
j=1

〈f−j , γ〉. (24)



6 TSOGTGEREL GANTUMUR

Now taking into account the compactness of |γ|, we infer

〈f−j , γ〉 =

∫
γ

−∞∑
n=−1

aj,n(z − zj)ndz =
−∞∑
n=−1

aj,n

∫
γ
(z − zj)ndz = 2πiaj,−1Ind(γ, zj), (25)

and recalling that aj,−1 = Res(f, zj) completes the proof. �

We will justify below in a self-contained manner that Ind(γ, z) indeed makes precise the
intuitive notion of the winding number of γ around z.

Let γ : [0, 1]→ C be a piecewise differentiable loop that does not pass through a ∈ C. With
t ∈ [0, 1], we partition the interval [0, t] as 0 = t0 < . . . < tn = t such that σj = γ|[tj−1,tj ] ⊂ Dj

where Dj ⊂ C \ {a} are open disks. On each Dj , there exists a logarithm of z − a, that is

logj(z − a) = log |z − a|+ i argj(z − a),

where z 7→ argj(z − a) is an argument function on Dj . Since log′j(z − a) = 1
z−a , we have∫

σj

dz

z − a
= logj

γ(tj)− a
γ(tj−1)− a

, (26)

and by exponentiating,

exp〈Ka, σj〉 ≡ exp

∫
σj

dz

z − a
=

γ(tj)− a
γ(tj−1)− a

. (27)

For σ = σ1 + . . .+ σn ≡ γ|[0,t], this gives

exp〈Ka, σ〉 = exp

n∑
j=1

〈Ka, σj〉 =

n∏
j=1

exp〈Ka, σj〉 =
γ(tn)− a
γ(t0)− a

, (28)

and since γ is a loop, we have exp〈Ka, γ〉 = 1, meaning that 〈Ka, γ〉 = 2πik for some k ∈ Z.
This concludes that Ind(γ, a) is an integer whenever γ is a piecewise differentiable loop that
does not pass through a ∈ C.

To get a better idea of how Ind(γ, a) relates to the number of times γ winds around a, let
us write (26) in its real and imaginary parts

〈Ka, σj〉 = log
|γ(tj)− a|
|γ(tj−1)− a|

+ i
(
argj(γ(tj)− a)− argj(γ(tj−1)− a)

)
. (29)

Note that although there are many choices of the argument function, the argument increment

∆j = argj(γ(tj)− a)− argj(γ(tj−1)− a) (30)

does not depend on this choice. Recalling that σ = σ1 + . . .+ σn ≡ γ|[0,t], we have

η(t) := 〈Ka, σ〉 = log
|γ(t)− a|
|γ(0)− a|

+ i

n∑
j=1

∆j . (31)

We know that η(0) = 0 and η(1) = 2πik ∈ 2πiZ, with k = Ind(γ, a). Moreover, from the
preceding formula it is clear that as t increases from 0 to 1, the imaginary part (or the vertical
motion) of η(t) records exactly the angular movement of the vector γ(t) − a. Combining
(28) with the definition of η, we infer that γ(t) = a + (γ(0) − a) exp η(t) for t ∈ [0, 1], or
γ = a+ (γ(0)− a) exp ◦η. On the other hand, η is homotopic (relative to fixed endpoints) to
the vertical line segment [0, 2πik], and a + (γ(0) − a) exp ◦[0, 2πik] is simply a circular path
that winds k times around a. Finally, this implies that for ε > 0, γ is freely homotopic to the
k-fold circle k · ∂Dε(a) in C \ {a}.
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In the following lemma, we collect some simple properties of the index function. If γ is a
piecewise differentiable loop, we define Intγ = {z ∈ C : Ind(γ, z) 6= 0} to be the interior of γ,
and Extγ = {z ∈ C : Ind(γ, z) = 0} to be the exterior of γ.

Lemma 11. Let γ ∈ C 1
pw(S1,C). Then we have the following.

(a) Ind(γ, a) ∈ Z whenever a /∈ |γ|.
(b) Ind(γ, ·) is locally constant in C \ |γ|.
(c) Intγ and Extγ are open.
(d) C = Intγ ∪ |γ| ∪ Extγ and the decomposition is disjoint.
(e) Intγ is bounded, and Extγ is nonempty and unbounded.
(f) If γ h 0 in Ω, with Ω ⊂ C an open set, then Intγ ⊂ Ω.

Proof. Part (a) has been demonstrated above, and (b) and (c) follow from continuity. Then
(d) is true by definition, and (f) follows from the fact that if a ∈ C \ Ω then Ka ∈ O(Ω) and
so 〈Ka, γ〉 = 0. Now, since |γ| is bounded there is a large disk D such that γ h 0 in D, and
by applying (f) we have (e). �

Making use of these properties, we can strengthen the residue theorem so as to allow
infinitely many isolated singularity points.

Theorem 12 (Residue theorem, stronger version). Let Ω ⊂ C be open, and let K ⊂ Ω be a
discrete set. Suppose that γ ∈ C 1

pw(S1,Ω) is null-homotopic in Ω, and does not pass through
any of the points in K. Then we have

〈f, γ〉 = 2πi
∑
c∈K

Ind(γ, c) Res(f, c), for f ∈ O(Ω \K),

where there are only finitely many nonzero summands in the sum on the right hand side.

Proof. Since |γ| is compact, there is an open bounded U such that U ⊂ Ω and |γ| ⊂ U . Then
U ∩K is finite by the discreteness of K, and Ind(γ, z) = 0 for z ∈ C\U by the local constancy
of Ind(γ, ·). Now we apply Theorem 10 to U to complete the proof. �

4. The argument principle

Definition 13. Let Ω ⊆ C be open, and let K ⊂ Ω be a discrete set. Then f : Ω \K → C
is called meromorphic on Ω if f ∈ O(Ω \K) and f has a pole at each point of K. The set of
meromorphic functions on Ω is denoted by M (Ω).

The argument principle is a result that gives a way to count the number of zeroes and poles
in a given region. Note that the counting takes into account the multiplicities.

Theorem 14 (Argument principle, Cauchy 1855). Let f ∈M (Ω) be a nonzero meromorphic
function, and let γ ∈ C 1

pw(S1,Ω) be null-homotopic in Ω. Suppose also that Ord(f, z) = 0 for
all z ∈ |γ|. Then we have∑

c∈Intγ
Ind(γ, c)Ord(f, c) =

1

2πi

〈f ′
f
, γ
〉

= Ind(f ◦ γ, 0),

where there are only finitely many nonzero summands in the sum on the left hand side.

Proof. Setting N = Ord(f, c), we can write f(z) = (z− c)Nh(z) in a neighbourhood of c with
h holomorphic and h(c) 6= 0. So we calculate, in a punctured neighbourhood of c,

f ′(z) = N(z − c)N−1h(z) + (z − c)Nh′(z), and so
f ′(z)

f(z)
=

N

z − c
+
h′(z)

h(z)
,

which gives Res(f ′/f, c) = N . Now the residue theorem completes the proof. �
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The argument principle says that the number of zeroes and poles of f depends on f con-
tinuously (under certain conditions). So being an integer, this number must be stable under
finite but not too large perturbations of f . The following theorem was proved by Eugène
Rouché (1832–1910) in 1862.

Theorem 15. Let f, g ∈ M (Ω), and let γ be a null-homologous cycle in Ω. Suppose that
|f − g| < |g| <∞ on |γ|. Then we have∑

c∈Intγ
Ind(γ, c)Ord(f, c) =

∑
c∈Intγ

Ind(γ, c)Ord(g, c).

Proof. Let hs = g + s(f − g) for s ∈ [0, 1]. Then we have

|hs| ≤ |g|+ |f − g| < 2|g| <∞, and |hs| ≥ |g| − |f − g| > 0, on |γ|.
We apply the argument principle to hs and define

η(s) =
∑
c∈Intγ

Ind(γ, c)Ord(hs, c) =
1

2πi

〈
g′ + s(f ′ − g′)
g + s(f − g)

, γ

〉
, s ∈ [0, 1].

It is obvious that η is continuous and takes integer values, so we have η(0) = η(1). Since
h0 = g and h1 = f , this establishes the proof. �

Remark 16. This theorem is still valid if the condition |f − g| < |g| <∞ is replaced by the
weaker condition |f − g| < |f |+ |g| <∞.

As an immediate application let us prove a fixed point theorem1.

Corollary 17. If φ ∈ O(D̄) and φ(∂D) ⊂ D then there is a unique fixed point of φ in D, i.e.,
there is a unique z ∈ D such that φ(z) = z.

Proof. Take f(z) = z−φ(z) and g(z) = z in Rouché’s theorem. We have |f−g| = |φ| < 1 = |g|
on ∂D, and so z − φ(z) and z have the same number of zeroes in D. �

Rouché’s theorem implies that the zeroes of (locally) uniformly converging holomorphic
functions must condense in a certain sense. The following theorem was proved by Adolf
Hurwitz (1859–1919) in 1889.

Theorem 18. Let {fn} ⊂ O(Ω) be a sequence such that fn → f ∈ O(Ω) locally uniformly.
Let U ⊂ Ω be a bounded open set with U ⊂ Ω, and assume that f has no zeroes on ∂U . Then
there exists a number N possibly depending on U , such that∑

c∈U
Ord(fn, c) =

∑
c∈U

Ord(f, c), for all n ≥ N.

Proof. Let us consider first the case U is a disk, and set ε = min
∂U
|f | > 0. Choose N so large

that |fn − f | < ε for all n > N . Then Rouché’s theorem guarantees that fn and f have the
same number of zeroes (counting multiplicity) in U . When U is a general bounded open set,
since f has finitely many zeroes in U , we cover those zeroes by finitely many disjoint open
disks and reduce the proof to the case of a disk. �

By applying this theorem to sequences of functions of the form z 7→ fn(z)−w, we can say
various things about {fn} and its limit, as the following theorem shows.

Theorem 19 (Hurwitz injection theorem). Let {fn} ⊂ O(Ω) be a sequence that converges
locally uniformly to a nonconstant f ∈ O(Ω). Then we have

(a) If all fn are zero-free, then f is zero-free.

1The material in the rest of the notes is for your interest, and not testable in the exam.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Rouche.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Rouche.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Hurwitz.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Hurwitz.html


ISOLATED SINGULARITIES 9

(b) If all fn are injective, then f is injective.
(c) If there is a set U ⊂ C such that fn(Ω) ⊂ U for all n, then f(Ω) ⊂ U .

Proof. Part (a) is the special case of (c) with U = C×. To prove (c), let w ∈ C\U and consider
the functions gn(z) = fn(z)− w, which are nowhere vanishing on Ω. Now if g(z) = f(z)− w
had a zero in Ω, then Hurwitz’s theorem would imply that almost all gn have zeroes in Ω. In
other words, f cannot take any value from C \ U .

As for (b), let a ∈ Ω arbitrary and consider the functions gn(z) = fn(z) − fn(a). The
injectivity of fn means that gn are nowhere vanishing in Ω \ {a}. Hence g(z) = f(z) − f(a)
must be nowhere vanishing in Ω\{a}, or in other words, f takes the value f(a) only at a. �

We record here a generalization of the argument principle that gives some information
about locations of zeroes and poles. For instance, taking g(z) = zn in the following theorem
one can extract (generalized) moments of the zeroes and poles.

Theorem 20 (Generalized argument principle). Let f ∈M (Ω) be nonzero, and let g ∈ O(Ω).
Let γ ∈ C 1

pw(S1,Ω) be null-homotopic in Ω. Suppose also that Ord(f, z) = 0 for all z ∈ |γ|.
Then we have ∑

c∈Intγ
g(c)Ind(γ, c)Ord(f, c) =

1

2πi

〈gf ′
f
, γ
〉
,

where there are only finitely many nonzero summands in the sum on the left hand side.

Proof. This is a direct computation which gives Res(gf ′/f, c) = g(c)Ord(f, c). �

5. Mapping properties of holomorphic functions

Let f be a nonconstant holomorphic function in a neighbourhood of 0 ∈ C, with f(0) = 0.
Obviously we can write f(z) = zng(z) with g(0) 6= 0, and n ≥ 1. Moreover, there is δ > 0
so small that the both functions f and f ′ are nowhere vanishing in the punctured closed disk
D̄δ \{0}. Let w ∈ C× be such that |w| < min

|z|=δ
|f(z)|. Then, by Rouché’s theorem, the function

z 7→ f(z)− w has exactly n zeroes in Dδ. Furthermore, those zeroes must be in D×δ because

w 6= 0, and since f ′ does not vanish in D×δ , the zeroes must be simple. We conclude that
each point in the disk DR of radius R = min

|z|=δ
|f(z)| has exactly n distinct points in Dδ as its

preimage set under f . Since f is continuous, f−1(DR) is an open neighbourhood of 0, so f is
n-to-1 on a neighbourhood of 0. In particular, recalling that n = 1 is equivalent to f ′(0) 6= 0,
local injectivity implies nonvanishing of the first derivative and vice versa. This substantially
clarifies local mapping properties of holomorphic functions.

Theorem 21. Let f be a holomorphic function in a neighbourhood of c ∈ C.

(a) If f is injective in a neighbourhood of c, then f ′(c) 6= 0.
(b) Conversely, if f ′(c) 6= 0, then f is injective in a neighbourhood of c.
(c) More generally, if f is not constant, then in a neighbourhood of c, it can be written as

f(z) = f(c) + ϕ(z)n,

where ϕ is a holomorphic injection and n = Ord(f ′, c) + 1.

Proof. We may assume, without loss of generality, that c = 0 and f(0) = 0. Claims (a) and
(b) have been proved above. In the notations of the paragraph preceding this theorem, since
g is nonvanishing in a neighbourhood of 0, there is a holomorphic ψ such that ψ(z)n = g(z)
in a neighbourhood of 0. Then with ϕ(z) = zψ(z), we have ϕ′(0) = ψ(0) 6= 0. �
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Theorem 22 (Inverse function theorem). With some disk D, let f ∈ O(D̄) be injective, and
let Σ = f(D). Then the inverse function f−1 : Σ→ D is holomorphic, and we have

f−1(w) =
1

2πi

∫
∂D

zf ′(z)dz

f(z)− w
, w ∈ Σ.

In particular, if f ∈ O(Ω) is injective on a domain Ω, then its inverse f−1 is holomorphic.

Proof. Let ζ ∈ D, and let w = f(ζ). Since f is injective, z 7→ f(z)−w has one simple zero at
z = ζ in D. We apply the generalized argument principle with g(z) = z, to obtain

ζ =
1

2πi

∫
∂D

zf ′(z)dz

f(z)− w
,

establishing the formula. By holomoprhy of integral then we get the holomorphy of f−1.
For the second part of the theorem, for each w ∈ f(Ω), we apply the first part of the theorem

to a disk centred at f−1(w) whose closure lies in Ω, to conclude that f−1 is holomorphic on
a neighbourhood of w. �

Holomorphic mappings generally preserve angles and orientations, in the sense we discuss
below. By definition, a curve γ : [−1, 1]→ C is differentiable at the parameter value 0 if there
exists τ ∈ C such that

γ(ε) = γ(0) + ετ + o(|ε|),
and in this situation τ is called the tangent of γ at γ(0). Now if φ is a holomorphic function
in a neighbourhood of γ(0), then there is λ ∈ C such that

φ(z + h) = φ(z) + λh+ o(|h|),

and moreover φ ◦ γ is a curve passing through and differentiable at φ(γ(0)). By combining
the preceding two definitions we can write

φ(γ(ε)) = φ(γ(0)) + λτε+ o(ε),

revealing that the tangent of φ ◦ γ at φ(γ(0)) is λτ . In particular, if λ ≡ φ′(γ(0)) 6= 0, or
equivalently if φ is injective in a neighbourhood of γ(0), then under φ all tangents are rotated
by the same angle, so the angle between any two curves intersecting at γ(0), together with its
orientation, is preserved under φ. This is almost the general picture, since the derivative φ′

is holomorphic and therefore its zeroes form a discrete set, provided that φ is not constant.
What happens at the zeroes of φ′ is also simple to understand. We know from Theorem
21(c) that at the zeroes of φ′ of order m, φ is equal to a holomorphic injection followed by
the polynomial map z 7→ zm+1, hence the angles are simply multiplied by m + 1. Let us
summarize these observations into the following informal remark, where we call the zeroes of
φ′ the critical points of φ.

Remark 23. Near any of its non-critical points, a holomorphic mapping is one-to-one, and
angle- and orientation preserving. Near a critical point, the mapping is n-to-1 for some integer
n (that may vary from critical point to critical point), and at the critical point itself, the angles
are multiplied by n. The critical points form a discrete set.

6. The Riemann sphere and meromorphic functions

In this section, we extend the domain of complex analysis from planar sets to more general
two dimensional manifolds.

We adopt the definition of manifold that an n-dimensional topological manifold is a Haus-
dorff, second countable topological space that is locally homeomorphic to Rn. Recall that
a topological space being Hausdorff means that any two distinct points have disjoint open
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neighbourhoods, and second countable means that there is a countable collection of open sets
such that any open set can be written as a union of sets from the collection.

Definition 24. An abstract, topological surface, or simply a surface, is a 2-dimensional
connected topological manifold.

Definition 25. A complex structure on a surface M is a collection C = {(Uα, ϕα)} of pairs
(Uα, ϕα) where Uα ⊂M and ϕ : Uα → C, satisfying

(1) Each Uα is connected open, and M = ∪αUα;
(2) Each ϕα : Uα → ϕα(Uα) ⊂ C is a homeomorphism;
(3) Each ϕα ◦ ϕ−1β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is holomorphic.

Two complex structures C1 and C2 on M are considered equivalent if their union C1 ∪ C2 is
again a complex structure on M .

Definition 26. A Riemann surface is a surface with a complex structure. Two Riemann
surfaces with equivalent complex structures are considered to be identical.

Connected open sets of C are trivial examples of Riemann surfaces. For perhaps the
simplest nontrivial example, the unit sphere S2 ⊂ R3 can be given a complex structure as
follows. Identify R3 with C×R, and call n = (0, 1) the north pole, and s = (0,−1) the south
pole. Define the stereographic projections ϕn : S2 \ {n} → C and ϕs : S2 \ {s} → C by

ϕn(ζ, λ) =
ζ

1 + λ
, (ζ, λ) ∈ S2 \ {n} and ϕs(ζ, λ) =

ζ̄

1− λ
, (ζ, λ) ∈ S2 \ {s}.

It is obvious that ϕn and ϕs are homeomorphisms, and that S2 \ {n} and S2 \ {s} constitute
an open cover of S2. With z = ϕn(ζ, λ) and w = ϕs(ζ, λ), where z and w are both defined,

we have zw = |ζ|2
1−λ2 = 1 since |ζ|2 + λ2 = 1 on S2. This means that the transition maps

ϕs(ϕ
−1
n (z)) =

1

z
, z ∈ C×, and ϕn(ϕ−1s (w)) =

1

w
, w ∈ C×,

are holomorphic on their respective domains. The Riemann surface thus constructed is called
the Riemann sphere. Via the map ϕn, the complex plane C is identified with the Riemann
sphere S2 minus the north pole, and so S2 can also be thought of as the extended complex
plane Ĉ := C ∪ {∞}, with the complex structure around ∞ defined by that of S2 around the

north pole. The arithmetic operations on C can be partially extended to Ĉ, and the role of
∞ ∈ Ĉ is somewhat special with respect to those extended operations. Note that however,
when Ĉ is considered as a Riemann surface, ∞ ∈ Ĉ is no more or less a point than any other
point in Ĉ (The same can be said about the point 0 in C). Indeed, one does not need all of
the structural properties of C in order to define the notion of holomorphy; all one needs is a
complex structure. In other words, Riemann surfaces are the natural habitats of holomorphic
functions.

Definition 27. Let M and S be Riemann surfaces, with complex structures {(Uα, ϕα)}
and {(Vβ, ψβ)}, respectively. Then f : M → S is called holomorphic if for all α and β,
ψβ ◦f ◦ϕ−1α : ϕα(Uα)→ ψβ(Vβ) is holomorphic wherever it is defined. The set of holomorphic
functions from M to S is denoted by O(M,S).

In this definition, if S = C then we simply talk about holomorphic functions on M and
write O(M) = O(M,C). Almost all of the theorems on domains of C can be extended to this
setting, with some new twists (or rather, insights) including the fact that results on contour
integration must now be formulated in terms of holomorphic 1-forms, because on a Riemann
surface there is no canonical 1-form that would play the role dz plays on C. Even when the
target surface S is a general Riemann surface, still great many of the theorems carry over,
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although the fact that one cannot do arithmetic operations on functions preclude certain
results (for example, series of functions does not make sense). The case S = Ĉ is exceptional
in that it is even better than the case S = C in some sense (see below).

With Dr ⊂ C a bounded disk, let f ∈ O(C \ D̄). If we consider C \ D̄ as a subset of Ĉ,

then C \ D̄ is a punctured neighbourhood of ∞ ∈ Ĉ, so the point ∞ is to be considered as an
isolated singularity of f . To study this singularity, let us expand f into its Laurent series

f(z) =
∞∑

n=−∞
anz

n.

This expansion is not immediately adequate for examining the point ∞ because the z-
coordinate chart does not contain ∞. So we perform the coordinate change w = 1/z and

work with the w-coordinates. In these coordinates ∞ ∈ Ĉ is w = 0, and the above-displayed
Laurent expansion becomes

f(w) =

∞∑
n=−∞

anw
−n =

∞∑
n=−∞

a−nw
n.

Now it is clear how the singularity at ∞ should be classified given the coefficients an of the
Laurent series around 0 ∈ Ĉ. The point ∞ is

• a removable singularity if an = 0 for all n > 0;
• a pole of order N if aN 6= 0 and an = 0 for all n > N ;
• an essential singularity if an 6= 0 for infinitely many n > 0.

For example, polynomials have poles at ∞, and the only holomorphic functions sending Ĉ to
C are constants. It also follows that if we allow only poles (and no essential singularities) in

f : Ĉ→ C, then f must be a rational function, i.e., f must be a quotient of two polynomials.
The set of holomorphic functions O(M) on a Riemann surface M is a ring with units (i.e.,

invertible elements) given by nowhere vanishing functions. What if we try to (multiplica-
tively) invert holomorphic functions with zeroes? The question is not that hopeless if we
remember that zeroes of a nonzero holomorphic function form a discrete set, and from the
characterization of poles theorem (Theorem 4) that zeroes become poles and poles become
zeroes upon invertion. This motivates the following definition, whose special case we have
already encountered in the preceding section.

Definition 28. Let M be a Riemann surface, and let K ⊂ M be a discrete set. Then
f : M \K → C is called meromorphic on M if f ∈ O(M \K) and f has a pole at each point
of K in local coordinates. The set of meromorphic functions on M is denoted by M (M).

From Theorem 4 it follows now that any nonzero element of M (M) is invertible, i.e.,
M (M) is a field. Also from the same theorem, we infer that if f ∈M (M) then near a pole
p ∈ M of f , 1/f is holomorphic and has a zero at p. Hence, meromorphic functions on M

are indeed holomorphic functions from M to Ĉ. Since a nonconstant holomorphic function
takes any fixed value (in particular the value∞) on at most a discrete set, one concludes that

holomorphic functions from M to Ĉ are meromorphic on M , so that M (M) = O(M, Ĉ).
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