
Solutions to the problems from the midterm exam
Math 249 Winter 2015

1. Let f be a holomorphic function in a convex open set Ω ⊂ C satisfying g(Ref)+h(Imf) = 0
in Ω, where g and h are real-valued differentiable functions of a real variable. (For example,
in one of the versions, we have g(u) = u and h(v) = −v3.) Assume that g′ 6= 0 everywhere
or h′ 6= 0 everywhere. Show that f must be constant in Ω.

Solution: Let us write f(x+ iy) = u(x, y) + iv(x, y) with u and v real. Then we have

g(u) + h(v) = 0 in Ω.

Differentiating this with respect to x and y, we get

g′(u)
∂u

∂x
+ h′(v)

∂v

∂x
= 0 and g′(u)

∂u

∂y
+ h′(v)

∂v

∂y
= 0,

which, in light of the Cauchy-Riemann equations, imply that

g′(u)
∂u

∂x
− h′(v)

∂u

∂y
= 0 and g′(u)

∂u

∂y
+ h′(v)

∂u

∂x
= 0.

Now we square each of these equations, and sum them, to conclude(
|g′(u)|2 + |h′(v)|2

)(∣∣∣∂u
∂x

∣∣∣2 +
∣∣∣∂u
∂y

∣∣∣2) = 0.

Because of the nonvanishing of at least one of g′ or h′, we have

∂u

∂x
=
∂u

∂y
= 0 everywhere in Ω,

and moreover,
∂v

∂x
=
∂v

∂y
= 0 everywhere in Ω,

by the Cauchy-Riemann equations.

What remains is to explain why the vanishing of the partial derivatives implies that u and
v are constants. The basic reason for this is that Ω is path-connected. To show this from
first principles, we may proceed as follows. Without loss of generality, assume that 0 ∈ Ω,
and let w ∈ Ω be an arbitrary point. Then by convexity and openness of Ω, there is ε > 0
such that Dε(wt) ⊂ Ω for all t ∈ [0, 1]. In other words, Ω contains an ε-neighbourhood
of the straight line segment connecting 0 and w. It is now clear that we can join 0 and
w by a “zigzag” path that consists of finitely many horizontal and vertical line segments,
and from here we have u(w) = u(0) and v(w) = v(0). Since w was arbitrary, we conclude
that f is constant in Ω.



2. Determine the convergence radii of the following power series.

(a)
∑
z2

n .

Solution: We can write the given series as
∑
akz

k with

ak =

{
1 if k = 2n for some integer n,
0 otherwise,

from which it is obvious that lim sup k
√
ak = 1, and by the Cauchy-Hadamard formula,

we have the convergence radius R = 1.

(b)
∑

(cosn)zn.
Solution: We have |(cosn)zn| ≤ |z|n, and so the series converges for |z| < 1. This
means that the convergence radius satisfies R ≥ 1. Now we want to show that cosn
does not converge to 0 as n→∞. Informally speaking, | cosn| ≈ 1 when n ≈ πk for
some k ∈ Z. As a way of making it precise, for each k ∈ N there is an integer nk > 3k
such that ∣∣∣π − nk

k

∣∣∣ ≤ 1

k
, or |nk − πk| ≤ 1.

Therefore we have
| cosnk| ≥ cos 1 > 0,

and so cosn 6→ 0 as n → ∞. This means that if |z| ≥ 1 then (cosn)zn does not
converge to 0, implying that R ≤ 1.

(c)
∑

(log n+ cn)zn, where c ∈ C is a constant.
Solution: With an = log n+ cn, an application of the ratio test leads to

lim
n→∞

|an+1|

|an|
= lim

n→∞

| log(n+ 1) + cn+1|
| log n+ cn|

=
∣∣∣ lim
n→∞

log(n+ 1) + cn+1

log n+ cn

∣∣∣. (1)

Note that |c|n grows faster than log n if |c| > 1, and that |c|n does not grow at all if
|c| ≤ 1. Therefore we split the problem into two cases. First, assume that |c| > 1.
Then we have

lim
n→∞

log(n+ 1) + cn+1

log n+ cn
= lim

n→∞

log(n+1)
cn + cn+1

cn

logn
cn + cn

cn

=
0 + c

0 + 1
= c. (2)

Now assume that |c| ≤ 1. In this case, we have

lim
n→∞

log(n+ 1) + cn+1

log n+ cn
= lim

n→∞

log(n+1)
logn + cn+1

logn

logn
logn + cn

logn

=
1 + 0

1 + 0
= 1. (3)

Based on these computations, we conclude that

lim
n→∞

|an+1|

|an|
=

{
|c| if |c| > 1,

1 if |c| ≤ 1,
(4)

or in other words,

R = min
{

1,
1

|c|
}
. (5)
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3. Given that the convergence radius of the power series
∑
anz

n is R > 0, determine the
convergence radii of the following power series.

(a)
∑
anz

2n

Solution: By assumption, the series
∑
anz

n converges whenever |z| < R and di-
verges whenever |z| > R. Therefore the series

∑
anz

2n =
∑
an(z2)n converges

whenever |z2| < R and diverges whenever |z2| > R. To repeat, the series
∑
anz

2n

converges whenever |z| <
√
R and diverges whenever |z| >

√
R. In other words, the

convergence radius of
∑
anz

2n is
√
R.

(b)
∑
n23nanz

n

Solution: As a preliminary observation, we claim that the convergence radius of∑
n2anz

n is still R. We could have simply cited this result, but let us reproduce
the argument here. First, denoting by R′ the convergence radius of

∑
n2anz

n, it
is obvious that R′ ≤ R. Second, for any z with |z| < R, there is ρ and M with
|z| < ρ < R such that |an| ≤Mρ−n (Abel’s observation). Then we have∑

n2|anzn| ≤
∑

Mn2
( |z|
ρ

)n
<∞,

which shows that
∑
n2anz

n converges, and thus R′ ≥ R. Hence the series
∑
n2anz

n

converges whenever |z| < R and diverges whenever |z| > R. This implies that
the series

∑
n23nanz

n =
∑
n2an(3z)n converges whenever |3z| < R and diverges

whenever |3z| > R. In other words, the convergence radius of
∑
n23nanz

n is R
3 .

(c)
∑
a2nz

n

Solution: Recall the definition

R = supA, where A = {r ≥ 0 : sup
n
|an|rn <∞},

for the convergence radius of
∑
anz

n. On the other hands, for the convergence radius
R′ of

∑
a2nz

n, we have

R′ = supB, with B = {r ≥ 0 : sup
n
|an|2rn <∞},

Now, obviously r ∈ A implies r2 ∈ B, because

sup
n
|an|2r2n = sup

n
(|an|rn)2 =

(
sup
n
|an|rn

)2
.

Moreover, r ∈ B implies
√
r ∈ A, because

sup
n
|an|(
√
r)n = sup

n

√
|an|2rn =

√
sup
n
|a2n|rn.

Therefore we have B = {r2 : r ∈ A}, and hence R′ = supB = (supA)2 = R2.
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