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1. Contour integration

Let Ω ⊂ C be an open set. A (topological) curve in Ω is a continuous map γ : [a, b] → Ω,
and it is called a closed curve or a loop if γ(a) = γ(b). Loops in Ω can also be defined as
continuous maps γ : S1 → Ω. The terms path, contour and arc are also used for a curve,
sometimes with slight differences in meaning. We will not make any distinction between any
of these terms. Non-self-intersecting curves are called simple, and simple closed curves are
called Jordan curves.

If φ : [c, d] → [a, b] is a monotone increasing surjective function, then we say that the
curve γ ◦ φ : [c, d] → Ω is equivalent to the original γ : [a, b] → Ω, and call the equivalence
classes of curves under this equivalence relation oriented curves. Intuitively, given the image
|γ| = γ([a, b]) of the curve γ, an oriented curve can be recovered upon identifying the initial
and terminal points, and specifying how to traverse at self-intersection points. By abuse of
language we call the particular representation γ : [a, b]→ Ω of the underlying oriented curve
also an oriented curve. Note that one can take the interval [a, b] to be, say, [0, 1] at one’s
convenience. Now, the inverse or the opposite of γ is defined by reversing the orientation:
γ−1(t) = γ(b + a − t) for t ∈ [a, b]. If γ : [0, 1] → Ω and σ : [1, 2] → Ω are two curves with
γ(1) = σ(1), then their product or concatenation γσ : [0, 2] → Ω is defined as γσ(t) = γ(t)
for t ∈ [0, 1] and γσ(t) = σ(t) for t ∈ [1, 2]. When the order of the operations are not
important, the above operations on curves can suggestively be written in the additive notation
as −γ ≡ γ−1 and γ + σ ≡ γσ.

The curve γ : [a, b]→ Ω is called differentiable if γ ∈ C 1([a, b]), with γ′(a) = γ′(b) for loops,
where the derivatives at a and b are to be understood in the one-sided sense. The curve γ is
called piecewise differentiable in Ω and written γ ∈ C 1

pw([a, b],Ω) if γ is the concatenation of
finitely many differentiable curves. We assume that differentiable and piecewise differentiable
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curves are oriented, which amounts to saying, e.g., for the case of differentiable curves that
we allow continuously differentiable monotone increasing reparameterizations of curves.

Ω

γ1

γ2 γ3

Figure 1. Examples of oriented curves.

Our goal in this section is to define an integral of a function f : Ω → C over a curve
γ : [a, b]→ Ω. To motivate the definition, we recall here a version of the fundamental theorem
of calculus for real valued functions.

Theorem 1 (Fundamental theorem of calculus). (a) If g ∈ C 1([a, b],R) then∫ b

a
g′(t) dt = g(b)− g(a). (1)

(b) If f ∈ C ([a, b],R) then the function

F (x) =

∫ x

a
f(t) dt, a ≤ x ≤ b, (2)

satisfies F ∈ C 1([a, b],R) and F ′ = f on [a, b].

Let us record here an immediate corollary that will be useful.

Corollary 2. Let φ ∈ C 1([a, b],R), and f ∈ C ([c, d],R) with φ([a, b]) ⊂ [c, d]. Then we have∫ b

a
f(φ(t))φ′(t) dt =

∫ φ(b)

φ(a)
f(x) dx. (3)

Proof. By hypothesis, the functions f : [c, d] → R and (f ◦ φ)φ′ : [a, b] → R are continuous,
and therefore Riemann intergable. Let F : [a, b]→ R be defined by

F (x) =

∫ x

a
f(t) dt, a ≤ x ≤ b, (4)

which, by the fundamental theorem of calculus, satisfies F ∈ C 1([a, b]) and F ′ = f in [a, b].
Then we have ∫ φ(b)

φ(a)
f(x) dx =

∫ φ(b)

φ(a)
F ′(x) dx = F (φ(b))− F (φ(a)). (5)

On the other hand, taking onto account the fact that

(F ◦ φ)′(t) = F ′(φ(t))φ′(t) = f(φ(t))φ′(t), a ≤ t ≤ b, (6)



FUNDAMENTAL THEOREMS 3

we infer ∫ b

a
f(φ(t))φ′(t) dt =

∫ b

a
(F ◦ φ)′(t) dt = (F ◦ φ)(b)− (F ◦ φ)(a) (7)

establishing the proof. �

Getting back to the main goal of this section, we want to require complex integration to
have the property ∫

γ
F ′(z) dz = F (γ(b))− F (γ(a)), (8)

where the left hand side is the yet-to-be-defined integral of F ′ : Ω → C over the curve
γ : [a, b] → Ω. This property mimics the first part of the fundamental theorem of calculus,
and basically asks complex integration to be an operation that inverts complex differentiation.
Note that this is a very strong condition: At the very least (8) says that the integral of F ′

over γ depends only on the endpoints γ(a) and γ(b) of the curve, and it does not matter how
the curve behaves between its endpoints.

A clue to how to ensure (8) comes from the fundamental theorem of calculus itself. If we
define g(t) = F (γ(t)) for a ≤ t ≤ b, then we have∫ b

a
g′(t) dt = g(b)− g(a) = F (γ(b))− F (γ(a)), (9)

where g is considered as a pair of real valued functions defend on the interval [a, b], and
integration and differentiation of g are understood componentwise. Now the idea is basically
to call the left hand side of (9) the integral of F ′ over γ. To write g′ in terms of F ′ and
possibly γ or γ′, let us assume that F is complex differentiable, and that γ is differentiable.
Then by definition, we have

F (γ(t+ h))− F (γ(t)) = F̃ (γ(t+ h))(γ(t+ h)− γ(t)) = F̃ (γ(t+ h))γ̃(t)h, (10)

where F̃ is continuous at γ(t), and γ̃ is continuous at t, which yields

g′(t) = F ′(γ(t))γ′(t), (11)

and hence, in light of (9), we infer∫ b

a
F ′(γ(t))γ′(t) dt = F (γ(b))− F (γ(a)). (12)

Our intention is to define the left hand side to be the integral of F ′ over γ.

Definition 3. The integral of f : Ω→ C over a curve γ ∈ C 1([a, b],Ω) is defined by

〈f, γ〉 ≡
∫
γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t)dt. (13)

For piecewise differentiable curves the integral is defined via “linearity”:

〈f, γ1 + . . .+ γn〉 = 〈f, γ1〉+ . . .+ 〈f, γn〉. (14)

Remark 4. (a) The integral 〈f, γ〉 is well-defined, e.g., if f : Ω→ C is continuous.
(b) Let f ∈ C (Ω) and γ ∈ C 1([a, b],Ω). Let φ ∈ C 1([c, d]) with φ([c, d]) ⊂ [a, b]. Then by

Corollary 2 we have∫ d

c
f(γ(φ(t)))γ′(φ(t))φ′(t) dt =

∫ φ(d)

φ(c)
f(γ(t))γ′(φ(t)) dt. (15)

Putting φ(c) = a and φ(d) = b, we infer

〈f, γ ◦ φ〉 = 〈f, γ〉, (16)
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which means that the integral 〈f, γ〉 is invariant under reparameterizations of the oriented
curve γ. On the other hand, if φ(c) = b and φ(d) = a, we have

〈f, γ ◦ φ〉 = −〈f, γ〉, (17)

and so in particular
〈f,−γ〉 = −〈f, γ〉. (18)

(c) If γ1 and γ2 are piecewise differentiable curves in Ω, and if f ∈ C (Ω), then

〈f, γ1 + γ1〉 = 〈f, γ1〉+ 〈f, γ2〉. (19)

(d) If f ∈ C (Ω) and γ ∈ C 1([a, b],Ω) then

|〈f, γ〉| ≤ max
a≤t≤b

|f(γ(t))| ·
∫ b

a
|γ′(t)| dt. (20)

Example 5. (a) Consider f(z) = z̄ and γ(t) = reit for 0 ≤ t ≤ 2π, where r > 0. By the
chain rule (11), which we rewrite here as

d

dt
g(α(t)) =

dg(z)

dz

∣∣∣
z=α(t)

· dα(t)

dt
, (21)

we have

γ′(t) =
d

dt
(reit) =

d

dz
(rez)

∣∣∣
z=it
· d(it)

dt
= rieit. (22)

Then noting that f(γ(t)) = f(reit) = re−it, we infer∫
γ
z̄ dz =

∫ 2π

0
re−it · rieitdt = r2i

∫ 2π

0
dt = 2πr2i. (23)

(b) Let f(z) = z, and let γ be as in (a). Then we have∫
γ
z dz =

∫ 2π

0
reit · rieitdt = r2i

∫ 2π

0
e2itdt. (24)

On the other hand, the chain rule (21) yields

d

dt
e2it = 2ie2it, (25)

and therefore (24) can be continued as∫
γ
z dz = r2i

∫ 2π

0

1

2i

( d

dt
e2it
)

dt =
r2e2it

2

∣∣∣2π
0

=
r2(e4πi − 1)

2
= 0. (26)

(c) Now consider f(z) = 1
z , with γ as above.∫

γ

dz

z
=

∫ 2π

0

rieit

reit
dt = i

∫ 2π

0
dt = 2πi. (27)

Exercise 6. For each n ∈ Z, compute the integral of zn over the circle given by γ(t) = reit,
0 ≤ t ≤ 2π, where r > 0.

Basically by construction, we get the following result.

Theorem 7 (FTC for holomorphic functions). Let F ∈ O(Ω) be a holomorphic function, and
suppose that F ′ is continuous in Ω. Then for any γ ∈ C 1

pw([a, b],Ω) we have∫
γ
F ′(z) dz = F (γ(b))− F (γ(a)). (28)

Proof. The function g = F ◦ γ satisfies g ∈ C 1([a, b],R2) with g′ = (F ′ ◦ γ) · γ′, and an
application of the fundamental theorem of calculus (Theorem 1) finishes the job. �
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Remark 8. The continuity hypothesis on F ′ is in fact superfluous, since it will turn out that
holomorphic functions are infinitely often differentiable. However, the above form (with the
continuity hypothesis) will be used to prove that fact.

Corollary 9. In the setting of the preceding theorem, if γ is a closed curve, then we have

〈F ′, γ〉 = 0. (29)

In particular, for any polynomial p and any γ ∈ C 1
pw(S1,C), we have

〈p, γ〉 = 0. (30)

Proof. For the first assertion, Theorem 7 and the condition γ(a) = γ(b) give∫
γ
F ′(z) dz = F (γ(b))− F (γ(a)) = 0. (31)

For the second assertion, since p is a polynomial, it is integrable in C, meaning that there is
F ∈ O(C) such that F ′ = p in C. Then we apply the first assertion to finish the proof. �

2. Goursat’s theorem

For a set U ⊂ C that is not open, the notation f ∈ O(U) means that f is holomorphic
in an open neighbourhood of U . Let us denote by [a, b] the (oriented) line segment with the
initial point a ∈ C and the terminal point b ∈ C. Given three points a, b, c ∈ C, the triangular
loop [a, b, c] is defined to be the oriented loop [a, b] + [b, c] + [c, a]. The set of points that are
strictly inside the loop [a, b, c] forms an open set τ ⊂ C, which we call an open triangle. In
this setting, the loop [a, b, c] is called the boundary of τ , and written ∂τ = [a, b, c]. Note that
there is an ambiguity in the orientation of ∂τ , since the loop [a, c, b], whose orientation is the
opposite of that of [a, b, c], gives rise to the same open triangle τ . The default convention is to
orient ∂τ in such a way that τ lies on the left of ∂τ , but it is always a good idea to explicitly
mention the chosen orientation to avoid confusion. Finally, the closure of τ , denoted by τ̄ , is
the union of τ and ∂τ , the latter taken as a set.

The following theorem was proved by Édouard Goursat (1858-1936) in 1883. This is an im-
provement over Cauchy’s theorem, in which Cauchy assumed that not only f is holomorphic,
but also the derivative f ′ is continuous. While the original formulation by Goursat employs
rectangles, the following “triangular” version is due to Alfred Pringsheim (1850-1941).

Theorem 10. Let τ ⊂ C be an open triangle, and let f ∈ O(τ). Then 〈f, ∂τ〉 = 0.

Proof. Let us subdivide τ into 4 congruent triangles τ1, τ2, τ3, τ4 by connecting the midpoints
of the edges of τ . All lengths of the smaller triangles are measured as half the corresponding
length of the original triangle τ . Moreover we have

〈f, ∂τ〉 =
∑

1≤j≤4

〈f, ∂τj〉. (32)

Let τm be a triangle among the 4 triangles that gives the largest contribution to the sum, and
call it τ (1), that is, τm (with some m between 1 and 4) satisfies |〈f, ∂τm〉| ≥ |〈f, ∂τj〉| for any
1 ≤ j ≤ 4. Then we have

|〈f, ∂τ〉| ≤ 4|〈f, ∂τ (1)〉|. (33)

Now subdividing τ (1) into 4 still smaller triangles, and repeating this procedure, we get

|〈f, ∂τ〉| ≤ 4n|〈f, ∂τ (n)〉|, (34)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Goursat.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Pringsheim.html
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with any length of τ (n) being 2−n part of the corresponding length of τ . In particular, if cn
is a point1 in τ (n), then the sequence {cn} is Cauchy, so cn → c for some c ∈ τ . Since f is
holomorphic in a neighbourhood of τ , by definition we have

f(z) = f(c) + λ(z − c) + o(2−n), z ∈ ∂τ (n), (35)

with some constant λ ∈ C. We calculate the integral of f over the boundary of τ (n) to be

〈f, ∂τ (n)〉 = 〈f(c) + λ(z − c), ∂τ (n)〉+ o(2−n · 2−n) = o(4−n), (36)

where the integral vanish by Corollary 9, and we have taken into account that the perimeter
of ∂τ (n) is of the order O(2−n). Substituting this into (34) establishes the proof. �

It is possible to slightly relax the hypothesis of Goursat’s theorem, so that only holomorphy
in the interior and continuity up to the boundary are assumed. The argument is a continuity
argument that can be used to strengthen many of the theorems that follow.

Corollary 11. Let τ ⊂ C be an open triangle, and let f ∈ O(τ) ∩ C(τ). Then 〈f, ∂τ〉 = 0.

Proof. Let a, b, c be the vertices of τ , and let {an}, {bn}, {cn} be sequences of points in τ such
that an → a, bn → b, and cn → c as n → ∞. As the closure of the triangle τn defined by
[an, bn, cn] is entirely in τ , Goursat’s theorem applies to τn, meaning that 〈f, ∂τn〉 = 0. By
uniform continuity, 〈f, ∂τn〉 tends to 〈f, ∂τ〉, hence 〈f, ∂τ〉 = 0. �

3. Local integrability

In what follows, by default Ω will always denote an open subset of C.

Definition 12. A continuous function f ∈ C(Ω) is called integrable in Ω if there is F ∈ O(Ω)
such that F ′ = f in Ω. It is called locally integrable in Ω if for any z ∈ Ω there exists an open
neighbourhood U of z such that f is integrable in U .

In combination with Goursat’s theorem, the theorem below implies that holomorphic func-
tions are locally integrable. By a closed triangle we mean a set of the form τ̄ , where τ ⊂ C is
an open triangle.

Theorem 13. Let D = Dr(c) be an open disk, and let f ∈ C (D) satisfy 〈f, ∂τ〉 = 0 for any
closed triangle τ ⊂ Ω. Then f is integrable in D.

Proof. Define F (z) = 〈f, [c, z]〉 for z ∈ D. We would like to show that F ′ = f on D, or
equivalently that

F (w) = F (z) + f(z)(w − z) + o(|w − z|). (37)

From the definition of F we have F (w) − F (z) = 〈f, [z, w]〉, and taking into account that
w − z = 〈1, [z, w]〉, we infer

F (w)− F (z)− f(z)(w − z) = 〈f, [z, w]〉 − f(z)〈1, [z, w]〉. (38)

Now f = f(z) + o(1) on [z, w], so the right hand side is of order o(|w − z|). �

In the subsequent sections, by a sequence of several theorems, we will prove that locally
integrable functions are analytic, therefore also holomorphic. Hence local integrability is
equivalent to holomorphy.

As a simple application of the theorem, we get Cauchy’s theorem for disks.

Corollary 14. Let f ∈ O(D), where D = Dr(c) is an open disk. Then 〈f, γ〉 = 0 for any
piecewise differentiable loop γ ∈ C 1

pw(S1, D) lying in D.

1For concreteness, e.g., we may take cn to be the barycenter of τ (n).
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Proof. By the preceding theorem (in combination with Goursat’s theorem) there is F ∈ O(Ω)
such that F ′ = f on D. Then the fundamental theorem of calculus for holomorphic functions
(Theorem 7) states that the integral of f over any piecewise differentiable closed curve must
be zero. �

We can slightly extend the argument in the proof of Theorem 13 to get a criterion on
(global) integrability.

Theorem 15. A continuous function f ∈ C (Ω) is integrable in Ω if and only if 〈f, γ〉 = 0
for any γ ∈ C 1

pw(S1,Ω).

Proof. One direction is immediate from the fundamental theorem of calculus. For the other
direction, assume that Ω is connected (otherwise we work in connected components of Ω one
by one). Let c ∈ Ω, and for z ∈ Ω define F (z) = 〈f, γ〉 with γ a piecewise differentiable curve
connecting2 c and z. The value F (z) does not depend on the particular curve γ, since if σ is
another curve connecting c and z, then γ − σ is a piecewise differentiable loop in Ω, so that
〈f, γ〉 = 〈f, σ〉 by hypothesis. Now noting that F (w)− F (z) = 〈f, [z, w]〉, the proof proceeds
in exactly the same way as in the proof of Theorem 13. �

4. Cauchy’s theorem for homotopic loops

Definition 16. Loops γ0, γ1 ∈ C (S1,Ω) are called (freely) homotopic to each other, and
written γ0 h γ1, if there exists a continuous map Γ : S1 × [0, 1]→ Ω such that Γ(t, 0) = γ0(t)
and Γ(t, 1) = γ1(t) for t ∈ S1.

Free homotopy is an equivalence relation in the space of loops, and so this space is parti-
tioned into (free) homotopy classes. The following theorem shows that at least in the piecewise
differentiable case, the integral of a given holomorphic function over a loop depends only on
the homotopy class the loop represents.

Theorem 17. For f ∈ O(Ω) and for piecewise differentiable loops γ0, γ1 ∈ C 1
pw(S1,Ω) with

γ0 h γ1, we have

〈f, γ0〉 = 〈f, γ1〉. (39)

Proof. Let us parametrize the circle S1 by the interval [0, 1], so the curves will be maps defined
on [0, 1]. Let Γ : [0, 1]2 → Ω be a homotopy between γ0 and γ1. Since [0, 1]2 is compact, Γ
is uniformly continuous, and the image |Γ| = {Γ(t, s) : (t, s) ∈ [0, 1]2} is a compact subset of
Ω. Fix ε > 0 such that ε < dist(|Γ|,C \Ω). Obviously, f is integrable in any disk Dε(z) with

z ∈ |Γ|. For a large integer n, let zj,k = Γ( jn ,
k
n) for j = 0, . . . , n, and k = 0, . . . , n. Let Qj,k

be the closed quadrilateral with the vertices zj,k, zj+1,k, zj+1,k+1, and zj,k+1. Then for k = 0,
we modify Qj,k so that the straight edge [zj,k, zj+1,k] is replaced by the piece of γ0 that lies
between zj,k and zj+1,k. Similarly, for k = n − 1, we modify Qj,k so that the straight edge
[zj+1,k+1, zj,k+1] is replaced by the piece of γ1 that lies between zj+1,k+1 and zj,k+1. Thus in
general Qj,k with k = 0 or k = n − 1 is going to be a quadrilateral with a curved edge. We
choose n to be so large that Qj,k ⊂ Dε(zj,k) for all j and k. Then note that

〈f, γ0〉 − 〈f, γ1〉 =
∑
j,k

〈f, ∂Qj,k〉, (40)

where the contribution from any edge of Qj,k that does not coincide with an edge of either γ0 or
γ1 is canceled due to the opposite orientations that a common edge inherits from neighbouring
polygons. Moreover, each integral 〈f, ∂Qj,k〉 is zero because f is integrable on Dε(zj,k) ⊂ Ω
and ∂Qj,k is a polygonal loop in Dε(zj,k). The theorem is proven. �

2Any two points in a connected open planar set can be connected by a piecewise linear curve.
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If a loop γ is homotopic to a constant path, i.e., γ h δ with δ : [a, b]→ Ω such that δ ≡ z
for some z ∈ Ω, then γ is said to be topologically trivial or null-homotopic, and this fact is
written as γ h 0.

Corollary 18. If γ ∈ C 1
pw(S1,Ω) is topologically trivial, then 〈f, γ〉 = 0 for any f ∈ O(Ω).

A somewhat trivial way to ensure that a particular closed curve in Ω is topologically trivial
is to simply require that every closed curve in Ω is topologically trivial.

Definition 19. A set Ω ⊂ C is called simply connected if it is connected and every closed
curve in Ω is topologically trivial.

Exercise 20. A star-shaped sets are characterized by the property that there is c ∈ Ω such
that z ∈ Ω implies [z, c] ⊂ Ω. For example, convex sets are star-shaped. Show that star-shaped
sets are simply connected.

Corollary 21. If Ω is simply connected then 〈f, γ〉 = 0 for f ∈ O(Ω) and γ ∈ C 1
pw(S1,Ω).

Definition 22. Curves γ0, γ1 ∈ C ([a, b],Ω) are called homotopic relative to their endpoints,
and written γ0 h{a,b} γ1, if there exists a continuous map Γ : [a, b] × [0, 1] → Ω such that
Γ(t, 0) = γ0(t) and Γ(t, 1) = γ1(t) for all t ∈ [a, b], and Γ(t, s) = γ0(t) for all s ∈ [0, 1] and
t ∈ {a, b}.

Note that γ0 h{a,b} γ1 implies in particular that γ0(a) = γ1(a) and γ0(b) = γ1(b). Similarly
to the free homotopy case, the space of curves that are “fixed” at their endpoints is partitioned
into (relative) homotopy classes.

Corollary 23. For f ∈ O(Ω) and for piecewise differentiable curves γ0, γ1 ∈ C 1
pw([a, b],Ω)

with γ0 h{a,b} γ1, we have 〈f, γ0〉 = 〈f, γ1〉.

Proof. One can show that the curve γ0 − γ1 is a topologically trivial piecewise differentiable
loop, by constructing a homotopy that, e.g., first follows the homotopy between γ0 and γ1

relative to the endpoints to collapse γ0 onto γ1, and then contracts γ1 to a point. �

5. Evaluation of real definite integrals

Recall that Euler’s main motivation for studying complex functions was to find a new way
to integrate real functions. With the help of Cauchy’s theorem, we can now make Euler’s
procedure precise. In this section, we want to look at a general method to treat improper
Riemann integrals.

Definition 24. Given f : (a, b)→ R with −∞ ≤ a < b ≤ ∞, the improper Riemann integral
of f over (a, b) is defined as ∫ b

a
f(x) dx = lim

α↘a
lim
β↗b

∫ β

α
f(x) dx. (41)

Moreover, for f : (a, b) ∪ (b, c)→ R, we define∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx. (42)

Example 25. We have ∫ ∞
1

dx

x2
= lim

b→∞

∫ b

1

dx

x2
= lim

b→∞

(
− 1

x

)∣∣∣∞
1

= 1. (43)
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The trivial link between complex and real integrations is the observation that a complex
contour integral reduces to a usual Riemann integral if the contour happens to be a real
interval. Indeed, if γ(t) = t, with a ≤ t ≤ b, then∫

γ
f(z) dz =

∫ b

a
f(t) dt, (44)

since γ′(t) = 1. Now we illustrate the method with an example.

Example 26. Let us compute the improper integral∫ ∞
0

dx

1 + x2
= lim

R→∞

∫ R

0

dx

1 + x2
. (45)

First, we write ∫ R

0

dx

1 + x2
=

1

2

∫ R

−R

dx

1 + x2
. (46)

Next, we consider the curve γ+
R (t) = Reit, 0 ≤ t ≤ π, which is the upper half of the circle of

radius R centred at the origin, and let γR be the concatenation of the real interval [−R,R]
and the semicircle γ+

R . Then we have∫ R

−R

dx

1 + x2
=

∫
γR

dz

1 + z2
−
∫
γ+R

dz

1 + z2
. (47)

Now we will evaluate the first integral in the right hand side. Since the function f(z) = 1
1+z2

is holomorphic in Ω = C \ {i,−i}, and the loop γR is freely homotopic in Ω to the loop
γε(t) = i+ εeit, 0 ≤ t ≤ 2π, we infer∫

γR

dz

1 + z2
=

∫
γε

dz

1 + z2
=

∫ 2π

0

iεeitdt

εeit(2i+ εeit)
=

∫ 2π

0

idt

2i+ εeit
. (48)

It is intuitively clear that the integrand is approximately 1
2 when ε > 0 is small. To obtain a

precise bound, note that∣∣ 1

2i+ εeit
− 1

2i

∣∣ =
∣∣ εeit

2i(2i+ εeit)

∣∣ ≤ |εeit|
4− |2εeit|

≤ ε

2
, (49)

as long as 0 < ε ≤ 1, which shows that∣∣∣ ∫ 2π

0

idt

2i+ εeit
−
∫ 2π

0

dt

2

∣∣∣ ≤ ∫ 2π

0

εdt

2
= πε. (50)

since this is true for any small ε > 0, we conclude that∫
γR

dz

1 + z2
=

∫ 2π

0

idt

2i+ εeit
=

∫ 2π

0

dt

2
= π. (51)

Finally, for the integral over the semicircle γ+
R in (47), we have∣∣∣ ∫

γ+R

dz

1 + z2

∣∣∣ ≤ 1

R2 − 1
· πR→ 0 as R→∞, (52)

and therefore the conclusion is∫ ∞
0

dx

1 + x2
=

1

2
lim
R→∞

∫ R

−R

dx

1 + x2
=
π

2
− 1

2
lim
R→∞

∫
γ+R

dz

1 + z2
=
π

2
. (53)
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Remark 27. The illustrated method works for any integral of the form∫ ∞
−∞

p(x)dx

q(x)
, (54)

where p and q are polynomials satisfying deg(q) ≥ deg(p) + 2 and q(x) 6= 0 for x ∈ R.

Exercise 28 (Jordan’s lemma). With γ+
R as in the preceding example, show that∫

γ+R

f(z)eiαzdz → 0 as R→∞, (55)

if α > 0, and |f(z)| ≤M(1 + |z|)−s for z ∈ C, with some constants M and s > 0.

6. The Cauchy integral formula

In this section, we will prove the Cauchy integral formula, which may be considered as
the cornerstone of complex analysis. Before stating the result, let us recall the notations
Dr(c) = {z ∈ C : |z − c| < r} and D̄r(c) = {z ∈ C : |z − c| ≤ r}. Moreover, given a disk
D = Dr(c), we denote by ∂D the oriented curve given by γ(t) = c+ reit for 0 ≤ t ≤ 2π.

Theorem 29 (Cauchy 1831). Let f ∈ O(Ω), and let D̄r(c) ⊂ Ω with r > 0. Then we have

f(ζ) =
1

2πi

∫
∂Dr(c)

f(z)dz

z − ζ
for ζ ∈ Dr(c). (56)

Proof. The function

F (z) =
f(z)

z − ζ
, z ∈ Ω \ {ζ}, (57)

is holomorphic in Ω \ {ζ}, and with ε > 0 small, the loop γε defined by γε(t) = ζ + εeit for
0 ≤ t ≤ 2π, is homotopic in Ω \ {ζ} to the circle ∂Dr(c). Hence we have∫

∂Dr(c)

f(z)dz

z − ζ
=

∫
γε

f(z)dz

z − ζ
. (58)

By complex differentiability, there is a function g : Ω→ C, continuous at ζ, such that

f(z) = f(ζ) + g(z)(z − ζ). (59)

Substituting this into (58), we get∫
∂Dr(c)

f(z)dz

z − ζ
= f(ζ)

∫
γε

dz

z − ζ
+

∫
γε

g(z)dz. (60)

The first integral in the right hand side leads to the familiar computation∫
γε

dz

z − ζ
=

∫ 2π

0

iεeitdt

εeit
= 2πi. (61)

As for the second integral, let δ > 0 be such that |g(z)−g(ζ)| < 1 whenever |z− ζ| < δ. Then
for 0 < ε < δ, we have ∣∣∣ ∫

γε

g(z)dz
∣∣∣ ≤ (|g(ζ)|+ 1) · 2πε. (62)

We conclude that ∣∣∣ ∫
∂Dr(c)

f(z)dz

z − ζ
− 2πif(ζ)

∣∣∣ ≤ (|g(ζ)|+ 1) · 2πε, (63)

for any 0 < ε < δ, meaning that the left hand side is equal to 0. �
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Corollary 30 (Mean value property). In the setting of the theorem, with γ(t) = c+ reit for
0 ≤ t ≤ 2π, we have

f(c) =
1

2πi

∫
γ

f(z)dz

z − c
=

1

2π

∫ 2π

0
f(c+ reit)dt, (64)

which shows that the value of f at c is the average of f over the circle ∂Dr(c).

Corollary 31. Let f ∈ O(Ω), ζ ∈ Ω, and let γ ∈ C 1
pw(S1,Ω \ {ζ}) be a loop homotopic to

∂Dε(ζ) in Ω \ {ζ} for some ε > 0. Then we have

f(ζ) =
1

2πi

∫
γ

f(z)dz

z − ζ
.

7. The Cauchy-Taylor theorem

Definition 32. A function f : Ω→ C is called (complex) analytic in Ω, if for any c ∈ Ω, one
can develop f into a power series centred at c, with a nonzero convergence radius. The set of
all analytic functions in Ω is denoted by C ω(Ω).

By an n-fold differentiation of the power series

f(z) =

∞∑
n=0

an(z − c)n, (65)

we infer that the coefficients are given by an = f (n)(c)/n!. In other words, if f ∈ C ω(Ω) and
c ∈ Ω, then the following Taylor series converges in a neighbourhood of c:

f(z) =
∞∑
n=0

f (n)(c)

n!
(z − c)n. (66)

Termwise differentiation of power series also implies that analytic functions are holomorphic,
i.e., C ω(Ω) ⊂ O(Ω). In fact, the converse O(Ω) ⊂ C ω(Ω) is also true.

Theorem 33 (Cauchy 1841). Let f ∈ C (D̄r(c)) with r > 0, and assume that

f(ζ) =
1

2πi

∫
∂Dr(c)

f(z) dz

z − ζ
for ζ ∈ Dr(c). (67)

Then the power series

f(ζ) =
∑

an(ζ − c)n, (68)

with

an =
1

2πi

∫
∂Dr(c)

f(z) dz

(z − c)n+1
, (69)

converges in Dr(c). In particular, we have O(Ω) ⊂ C ω(Ω) for open sets Ω ⊂ C.

Proof. Without loss of generality, let us assume c = 0, and start with the integral formula

f(ζ) =
1

2πi

∫
∂Dr

f(z) dz

z − ζ
, for ζ ∈ Dr. (70)

This can be rewritten as

f(ζ) =
1

2πi

∫
∂Dr

( ∞∑
n=0

f(z)ζn

zn+1

)
dz, (71)

where we have used

1

z − ζ
=

1

z
· 1

1− ζ/z
=

1

z

(
1 +

ζ

z
+ . . .

)
=
∞∑
n=0

ζn

zn+1
. (72)
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Each term in the series under integral in (71) can be estimated as∣∣∣∣f(z)ζn

zn+1

∣∣∣∣ ≤ ‖f‖Drr
·
(
|ζ|
r

)n
, where ‖f‖Dr = sup

z∈Dr
|f(z)|, (73)

so as a function of z, the series converges uniformly on ∂Dr. Therefore we can interchange
the integral with the sum, resulting in

f(ζ) =
1

2πi

∞∑
n=0

ζn
∫
∂Dr

f(z)dz

zn+1
.

Now the individual term of the series satisfies∣∣∣∣ζn ∫
∂Dr

f(z)dz

zn+1

∣∣∣∣ ≤ 2π‖f‖Dr
(
|ζ|
r

)n
,

implying that the series converges locally normally in Dr. �

8. Morera’s theorem

The following result was proved by Giacinto Morera (1856-1907) in 1886.

Theorem 34. A function f ∈ C (Ω) is holomorphic if any of the following conditions holds.

(a) f is locally integrable.
(b) 〈f, ∂τ〉 = 0 for any closed triangle τ ⊂ Ω.

Proof. Condition (a) follows from (b) by Theorem 13. Now suppose that (a) holds. Then by
definition, each point in Ω has a neighbourhood U and F ∈ O(U) such that F ′ = f on U .
The Cauchy-Taylor theorem guarantees that F ∈ C ω(U), and by termwise differentiating we
infer f ∈ C ω(U). This means that f ∈ C ω(Ω), or in other words f ∈ O(Ω). �

As an application, one can prove that the locally uniform limit of holomorphic functions is
holomorphic. This is to be contrasted with the situation in the real differentiable case where
the uniform limit of smooth functions is not smooth in general. The following theorem is
often called the Weierstrass convergence theorem.

Theorem 35 (Weierstrass 1841). Let {fk} ⊂ O(Ω) be a sequence such that fk → f locally

uniformly in Ω for some function f : Ω → C. Then f ∈ O(Ω) and f
(n)
k → f (n) locally

uniformly in Ω, for each n ∈ N.

Proof. First of all we have f ∈ C (Ω), without using complex analysis. Now let τ ⊂ Ω be a
closed triangle. Then since ∂τ is compact, fn converges uniformly to f on ∂τ , and so we have

〈f, ∂τ〉 = lim
k→∞
〈fk, ∂τ〉 = 0,

implying that f ∈ O(Ω) by Morera’s theorem.
For the second part of the claim we employ the Cauchy estimates. Let D2δ(a) ⊂ Ω for

some δ > 0. Then since fk − f ∈ O(Ω), for k ∈ N the Cauchy estimate gives

‖f (n)
k − f (n)‖Dδ(a) ≤

n!

δn
‖fk − f‖D2δ(a),

completing the proof. �

We close this section with a theorem that offers many different characterizations of holo-
morphic functions. This is an indication that the initial phase in the development of the
theory is now complete. If we were building a rocket, at this point we have assembled it and
are ready to start testing.

Theorem 36. Let Ω ⊂ C be open, and let f ∈ C (Ω). Then the following are equivalent.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Morera.html
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(a) f is holomorphic in Ω, i.e., f ∈ O(Ω).
(b) For all closed triangles τ ⊂ Ω, the integral of f over the boundary of τ is zero.
(c) f is locally integrable in Ω.

(d) For all open disks D with D̄ ⊂ Ω and for a ∈ D, one has f(a) =
1

2πi

∫
∂D

f(z)dz

z − a
.

(e) f is analytic in Ω, i.e., f ∈ C ω(Ω).

Proof. The implication (e) ⇒ (a) follows from termwise differentiation of power series. The
implication (a) ⇒ (b) is Goursat’s theorem in §2, and (b) ⇒ (c) is the integrability theorem
(Theorem 13) in §3. Then (a) ⇒ (d) is the argument leading to the Cauchy integral formula
in §4 and §6, where we have also used the implication (a)⇒ (c), and (d)⇒ (e) is the Cauchy-
Taylor theorem in §7. Using all of these, (c) ⇒ (a) is proven as Morera’s theorem in §8. �

9. The Cauchy estimates

We have the following fundamental estimates on power series coefficients, which roughly
says that the largest term in the series determines the maximum absolute value the power
series can have in a given region.

Theorem 37 (Cauchy 1835). Let f(z) =
∑
an(z−c)n be convergent in an open neighbourhood

of D̄ρ(c). Then we have

|an|ρn ≤ max
|z−c|=ρ

|f(z)| for n = 0, 1, . . . , (74)

or equivalently,

|f (n)(c)| ≤ n!

ρn
max
|z−c|=ρ

|f(z)| for n = 0, 1, . . . . (75)

Proof. It is immediate from the Cauchy-Taylor theorem (Theorem 33) that

|an| =
1

2π

∣∣∣ ∫
∂Dρ(c)

f(z) dz

(z − c)n+1

∣∣∣ ≤ 1

2π
· 2πρ · 1

ρn+1
, (76)

which is the desired estimate. �

Functions analytic in the entire complex plane C are called entire functions. In 1844,
Cauchy proved that bounded entire functions are constant, but this theorem is now known
as Liouville’s theorem. The reason for this is attributed to Carl Borchardt (1817-1880), who
learned the theorem from Joseph Liouville (1809-1882) in 1847, and then published it under
the name Liouville’s theorem in 1879.

Corollary 38 (Liouville’s theorem). If f ∈ O(C), and if there exists a constant M > 0 such
that |f(z)| ≤M for z ∈ C, then f must be a constant function.

Proof. By the Cauchy-Taylor theorem, the Taylor series of f centred at the origin converges
uniformly on any closed disk. Applying the Cauchy estimates to this series on D̄ρ with ρ > 0,
we get the following bound on the n-th coefficient

|an| ≤ ρ−n max
|z|=ρ

|f(z)| ≤ ρ−nM.

Since ρ can be arbitrarily large, this estimate shows that an = 0 for all n = 1, 2, . . .. �

Liouville’s theorem can be used to prove the fundamental theorem of algebra.

Corollary 39. Any nonconstant polynomial has at least one root in C.

Proof. Suppose that a polynomial p has no root. Then f = 1
p ∈ O(C). If p(z) = a0 + a1z +

. . . + anz
n with an 6= 0, then |p(z)| ∼ |an||z|n for large z, meaning that f is bounded. By

Liouville’s theorem f must be constant, contradicting the hypothesis. �

http://www-history.mcs.st-andrews.ac.uk/Biographies/Borchardt.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Liouville.html
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Exercise 40. If f ∈ O(C), and if there exist M > 0 and s such that |f(z)| ≤M(1 + |z|s) for
z ∈ C, then f must be a polynomial of degree at most s.

10. The identity theorem

Recall that an accumulation point of a set D ⊂ C is a point z ∈ C such that any neigh-
bourhood of z contains a point w 6= z from D. We say that z ∈ D is an isolated point if it is
not an accumulation point of D. If all points of D are isolated D is called discrete.

Theorem 41 (Identity theorem). Let f ∈ C ω(Ω) with Ω a connected open set, and let one
or both of the following conditions hold.

(a) The zero set of f has an accumulation point in Ω.

(b) There is c ∈ Ω such that f (n)(c) = 0 for all n.

Then f ≡ 0 in Ω.

Proof. By definition, connectedness of Ω means that if Ω = A∪B for some open and disjoint
sets A and B, then it is necessarily either A = Ω or B = Ω.

Our strategy is to show that both A = {z ∈ Ω : f (n)(z) = 0∀n} and its complement
B = Ω \ A are open, and that A is nonempty. This would establish that A = Ω, and hence
f ≡ 0 in Ω. It is easy to see that A is open, because c ∈ A implies that f ≡ 0 in a small disk
centred at c by a Taylor series argument. To see that B is open, we write it as B =

⋃
nBn

with Bn = {z ∈ Ω : f (n)(z) 6= 0}. Since Bn is the preimage of the open set C \ {0} under the

continuous mapping f (n) : Ω→ C, we infer that Bn is open, and thus B is open. Part (b) of
the theorem is established, since c ∈ A (and so A 6= ∅) by hypothesis.

For part (a), it remains to prove that A is nonempty. Let c ∈ Ω be an accumulation point
of {z ∈ Ω : f(z) = 0}, and suppose that c 6∈ A. Let n be the smallest integer such that

f (n)(c) 6= 0. Then we have f(z) = (z − c)ng(z) for some continuous function g with g(c) 6= 0.
This implies the existence of a small open disk Dε(c) in which f(z) = 0 has only one solution
z = c, contradicting that c is an accumulation point of the zero set of f . �

The following corollary records the fact that an analytic function is completely determined
by its restriction to any non-discrete subset of its domain of definition. In other words, if it
is at all possible to extend an analytic function (defined on a non-discrete set) to a bigger
domain, then there is only one way to do the extension.

Corollary 42 (Uniqueness of analytic continuation). Let u, v ∈ C ω(Ω) with Ω a connected
open set, and let u ≡ v in a non-discrete set D ⊂ Ω. Then u ≡ v in Ω.

11. The open mapping theorem

The Cauchy estimates (Theorem 37) can also be used to prove the open mapping theorem.

Theorem 43. Let Ω be a connected open set, and suppose that f ∈ O(Ω) is not a constant
function. Then f : Ω→ C is an open mapping, i.e., it sends open sets to open sets.

Proof. Without loss of generality let us assume that 0 ∈ Ω and that f(0) = 0. We will prove
that a small disk centred at the origin will be mapped by f to a neighbourhood of the origin.
Let Dr ⊂ Ω with r > 0, and let w 6∈ f(Dr). Then the function φ(z) = 1

f(z)−w is analytic

in Dr. Choose 0 < ρ < r so small that f(z) = 0 has no solution with |z| = ρ, so that
δ = inf

|z|=ρ
|f(z)| > 0. This is possible by the identity theorem since f is not constant and Ω is

connected. Since ρ < r, the Taylor series of φ about 0 converges uniformly in the closed disk
D̄ρ. Now we apply the Cauchy estimate to φ and get

|φ(0)| ≤ sup
|z|=ρ
|φ(z)| =

(
inf
|z|=ρ
|f(z)− w|

)−1

,
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which, taking into account that |φ(0)| = |w|−1, is equivalent to

inf
|z|=ρ
|f(z)− w| ≤ |w|.

We have |f(z) − w| ≥ |f(z)| − |w| ≥ δ − |w| for |z| = ρ, therefore the above estimate gives
|w| ≥ δ/2. It follows that Dδ/2 ⊂ f(Dr). �

Thus for example, one cannot get a (nonzero-length) curve as the image of an open set under
a holomorphic mapping. In particular, the only real-valued holomorphic functions defined on
an open set in C are locally constant functions.

The open mapping theorem can be used to obtain a proof of maximum principles.

Corollary 44 (Maximum principle). Let f ∈ O(Ω) with Ω an open subset of C.

(a) If Ω is connected and |f(z)| = sup
Ω
|f | at some z ∈ Ω, then f is constant.

(b) If Ω is bounded and f ∈ C (Ω̄), then we have sup
Ω
|f | ≤ max

∂Ω
|f |.

Proof. The hypothesis in (a) says that f(z) is a boundary point of the image f(Ω), since
otherwise there would have to be a point in f(Ω) with absolute value strictly greater than
|f(z)|. If f is not a constant, by the open mapping theorem f(Ω) cannot include any of its
boundary points, leading to a contradiction.

For part (b), there is z ∈ Ω̄ with |f(z)| = sup
Ω̄

|f | since Ω is bounded and f is continuous

on Ω̄. If z ∈ ∂Ω then we are done; otherwise applying part (a) to the connected component
of Ω that contains z concludes the proof. �

We end this section with two simple corollaries of the open mapping theorem.

Corollary 45 (Preservation of domains). If Ω ⊂ C is connected open set and f ∈ O(Ω)
nonconstant, then f(Ω) is also a connected open set.

Exercise 46. Let f ∈ O(C), and suppose that |f(z)| → ∞ as |z| → ∞. Then f(C) = C.
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