# ELEMENTARY FUNCTIONS

### TSOGTGEREL GANTUMUR

# Contents

| 1. | Constant functions | 1  |
|----|--------------------|----|
| 2. | The exponential    | 2  |
| 3. | The argument       | 6  |
| 4. | Logarithms         | 8  |
| 5. | Powers             | 11 |
| 6. | Circular functions | 12 |

## 1. Constant functions

Before delving into the study of elementary functions, we prove here a simple preliminary lemma on constant functions. Recall that  $D_r(c) = \{z \in \mathbb{C} : |z - c| < r\}$ .

**Lemma 1.** Let  $f \in \mathcal{O}(D_r(c))$  and f' = 0 in  $D_r(c)$ , where r > 0 and  $c \in \mathbb{C}$ . Then f is constant in  $D_r(c)$ .

*Proof.* Let f(x+iy) = u(x,y) + iv(x,y). Since f is holomorphic in  $D_r(c)$ , the partial derivatives of u and v exist in  $D_r(c)$ , and the (complex) derivative f'(x+iy) is represented by multiplication by the Jacobian matrix

$$J(x,y) = \begin{pmatrix} \frac{\partial u}{\partial x}(x,y) & \frac{\partial u}{\partial y}(x,y) \\ \frac{\partial v}{\partial x}(x,y) & \frac{\partial v}{\partial y}(x,y) \end{pmatrix}.$$
 (1)

Now f' = 0 implies that the Jacobian matrix must vanish everywhere in  $D_r(c)$ . This means that u and v are constant along every horizontal line and along every vertical line. Since every point in  $D_r(c)$  can be joined to the centre c by a polygonal path consisting of only horizontal and vertical line segments, we conclude that u and v are equal to their values at c, and hence they must be constant in  $D_r(c)$ .

**Remark 2.** In the preceding proof, it was not necessary to consider paths consisting of only horizontal and vertical line segments. We could have joined the centre c with any point in the disk by a straight line segment, and used directional derivatives instead of partial derivatives. Moreover, the region in which the result holds can be vastly generalized; The result holds in an open set  $\Omega$  if any two points in  $\Omega$  can be joined by a polygonal path, i.e., if  $\Omega$  is *path-connected*.

Date: March 9, 2015.



FIGURE 1. Any point in a disk can be connected to the centre by a polygonal path consisting of only horizontal and vertical line segments.

# 2. The exponential

We look for the complex exponential as a solution of the problem

$$f' = f, \qquad f(0) = 1$$

and we look for it in the form of a power series  $f(z) = \sum a_n z^n$ . Formally differentiating the power series we find  $a_n = a_{n-1}/n = \ldots = a_0/n!$ , and the condition f(0) = 1 gives  $a_0 = 1$ . Thus the *complex exponential* is given by the power series

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!},\tag{2}$$

whose convergence radius (e.g. by the ratio test) is  $\infty$ , and so in particular exp  $\in \mathscr{O}(\mathbb{C})$ .

Let us make some simple observations.

• By construction, we have

$$\frac{\mathrm{d}}{\mathrm{d}z}\exp=\exp\quad\text{in }\mathbb{C},\qquad\text{and}\quad\exp(0)=1.$$
(3)

• For  $a \in \mathbb{C}$ , let  $g(z) = \exp(z) \exp(a - z)$ . Then we have

$$g'(z) = \exp(z)\exp(a-z) - \exp(z)\exp(a-z) = 0,$$
(4)

for all  $z \in \mathbb{C}$ , which, by  $g(0) = \exp(a)$  and by Lemma 1, implies that

$$\exp(z)\exp(a-z) = \exp(a) \quad \text{for} \quad a, z \in \mathbb{C}.$$
(5)

• Putting a = w + z, we get the *law of addition* 

$$\exp(z+w) = \exp(z)\exp(w) \quad \text{for} \quad z, w \in \mathbb{C}.$$
 (6)

• Putting a = 0, we infer

 $\exp(-z)\exp(z) = 1 \qquad \text{and so} \qquad \exp(z) \neq 0 \qquad \forall z \in \mathbb{C}.$ 

- Therefore exp :  $\mathbb{C} \to \mathbb{C}^{\times}$  is a group homomorphism, where  $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$  is the multiplicative group of  $\mathbb{C}$ .
- By considering  $g(z) = f(z) \exp(-z)$ , one can show that the only function satisfying f' = f in  $\mathbb{C}$  with f(0) = 1 is the complex exponential.

In the following theorem, we construct a holomorphic (right) inverse of the exponential in the open disk  $D_1(1)$ . By using this inverse, we will also show that given  $a \in \mathbb{C}^{\times}$  with  $a = \exp \alpha$  for some  $\alpha \in \mathbb{C}$ , a holomorphic inverse of the exponential exists in the open disk  $D_{|a|}(a)$ . Recall here that  $D_r(c) = \{z \in \mathbb{C} : |z - c| < r\}$ . **Theorem 3.** (a) The power series

$$\lambda(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (z-1)^n,$$
(7)

converges in  $D_1(1)$ , and hence defines a function  $\lambda \in \mathcal{O}(D_1(1))$ . Moreover, we have

$$\exp \lambda(z) = z$$
 and  $\lambda'(z) = \frac{1}{z}$  for  $z \in D_1(1)$ . (8)

(b) If  $a \in \mathbb{C}^{\times}$  and  $\exp \alpha = a$ , then  $\lambda_a(z) = \lambda(\frac{z}{a}) + \alpha$  satisfies

$$\exp \lambda_a(z) = z \quad and \quad \lambda'_a(z) = \frac{1}{z} \quad for \quad z \in D_{|a|}(a).$$
(9)

In particular,  $\lambda_a$  is holomorphic in  $D_{|a|}(a)$ .

*Proof.* (a) By the ratio test, the convergence radius of (7) is 1, so (7) converges in  $D_1(1)$ . Then a termwise differentiation gives

$$\lambda'(z) = \sum_{n=1}^{\infty} (-1)^{n-1} (z-1)^{n-1} = \sum_{n=1}^{\infty} (1-z)^{n-1} = \frac{1}{1-(1-z)} = \frac{1}{z},$$

provided that |1 - z| < 1, that is,  $z \in D_1(1)$ .

Now let  $g(z) = z \exp(-\lambda(z))$ . Then for  $z \in D_1(1)$  we have

$$g'(z) = \exp(-\lambda(z)) - z \exp(-\lambda(z))\lambda'(z) = 0,$$

meaning that  $g(z) = g(1) = \exp(-\lambda(1)) = 1$  in  $D_1(1)$ .

(b) We have

$$\exp(\lambda_a(z)) = \exp\left(\lambda(\frac{z}{a})\right) \exp(\alpha) = \frac{z}{a} \cdot a = z, \tag{10}$$

and

$$\lambda_a'(z) = \lambda'\left(\frac{z}{a}\right) \cdot \frac{1}{a} = \frac{a}{z} \cdot \frac{1}{a} = \frac{1}{z},\tag{11}$$

as long as  $|\frac{z}{a} - 1| < 1$ , that is, if |z - a| < |a|. This completes the proof.

**Corollary 4.** The map  $exp : \mathbb{C} \to \mathbb{C}^{\times}$  is surjective.

Proof. Let  $A = \{\exp z : z \in \mathbb{C}\}$ . By Theorem 3, we know that  $D_1(1) \subset A$ , and that  $a \in A$  implies  $D_{|a|}(a) \subset A$ . Hence the proof is reduced to the following "game." Initially, the disk  $D_1(1)$  is coloured blue, and the rest of the complex plane is white. At any stage in the game, we can choose a point a in the blue region, and colour all the points in the disk  $D_{|a|}(a)$  blue. The question is, by repeating this procedure, can we colour the entire set  $\mathbb{C}^{\times}$  blue? It is not difficult to see that it is possible to do so.

One possibility is as follows (Figure 2). Let 1 < r < 2. Then  $r \in D_1(1)$ , and hence  $D_r(r) \subset A$ . In particular,  $r^2 \in A$ , and hence  $D_{r^2}(r^2) \subset A$ . By induction, this shows that  $D_{r^n}(r^n) \subset A$  for any n, and since any  $z \in \mathbb{C}$  with  $\operatorname{Re} z > 0$  can be contained in  $D_{r^n}(r^n)$  for sufficiently large n, we conclude that  $\{z : \operatorname{Re} z > 0\} \subset A$ .

Let  $a = i + \varepsilon$ , where  $\varepsilon > 0$  is a small real number. Then  $i \in D_{|a|}(a)$ , and hence  $i \in A$ , or  $D_1(i) \subset A$ . By considering the succession of points  $\{ir^n\}$  with a constant 1 < r < 2, we conclude that  $D_{r^n}(ir^n) \subset A$  for all n, or  $\{z : \operatorname{Im} z > 0\} \subset A$ .

Finally, by considering the points  $a = -1 + i\varepsilon$  and  $a = -i + \varepsilon$ , we get  $-1 \in A$  and  $-i \in A$ . Then we repeat the same procedure with the sequences  $\{-r^n\}$  and  $\{-ir^n\}$  as the disk centres, to conclude that  $\{z : \operatorname{Re} z < 0\} \subset A$  and  $\{z : \operatorname{Im} z < 0\} \subset A$ .

**Definition 5** (Euler 1748). We define the *Euler number* by  $e = \exp 1$ .



(A) Starting with  $D_1(1)$ , and painting the disks  $D_{r^n}(r^n)$  for a fixed  $r \in (1,2)$  and for all  $n = 1, 2, \ldots$ , we can colour the right half plane {Rez > 0}.



(B) Once we coloured the right half plane, it is easy to paint the point i.



(C) Once *i* is coloured, we repeat the same procedure to paint the upper half plane  $\{\text{Im} z > 0\}$ .

FIGURE 2. Illustration of the proof of Corollary 4.

**Remark 6** (Real exponential). (a) From the definition (2) it is clear that if  $x \in \mathbb{R}$  then  $\exp x \in \mathbb{R}$ . In particular, *e* is real. We also have

$$\exp x = 1 + x + \frac{x^2}{2!} + \ldots \ge 1 + x \quad \text{for} \quad x \ge 0,$$
 (12)

which implies that  $\exp x \to \infty$  as  $x \to \infty$ . Moreover, since  $\exp(-x) = \frac{1}{\exp x}$ , we have

$$0 < \exp(-x) \le \frac{1}{1+x}$$
 for  $x \ge 0$ , (13)

and so in particular,  $\exp x \to 0$  as  $x \to -\infty$ . We conclude that  $\exp : \mathbb{R} \to (0, \infty)$  is surjective.

(b) Let us compute the derivative of  $\exp x$  with respect to  $x \in \mathbb{R}$ . Suppose that f(x+iy) = u(x,y) + iv(x,y) is a complex differentiable function, with u and v real. Then we have

$$f'(x+iy) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y), \qquad (14)$$

where f' denotes the complex derivative of f. If  $f(x) \in \mathbb{R}$  for  $x \in \mathbb{R}$ , then f(x) = u(x, 0) and v(x, 0) = 0 for all x, implying that

$$f'(x) = \frac{\partial u}{\partial x}(x,0) = \frac{\mathrm{d}}{\mathrm{d}x}f(x).$$
(15)

Returning back to the exponential function, we infer

$$\frac{\mathrm{d}}{\mathrm{d}x}\exp x = \exp'(x) = \exp x > 0 \qquad \text{for all} \quad x \in \mathbb{R}.$$
(16)

Therefore,  $\exp : \mathbb{R} \to (0, \infty)$  is strictly increasing, and hence a bijection. The inverse function  $\log : (0, \infty) \to \mathbb{R}$  is called the *real logarithm*.

(c) For any  $z \in \mathbb{C}$  and  $n \in \mathbb{N}$ , we have

$$\exp(nz) = \exp(z + \ldots + z) = \exp(z) \cdots \exp(z) = (\exp z)^n,$$
(17)

and

$$\exp(-nz) = \frac{1}{\exp(nz)} = \frac{1}{(\exp z)^n} = (\exp z)^{-n},$$
(18)

showing that  $\exp(nz) = (\exp z)^n$  for all  $n \in \mathbb{Z}$ . Putting  $z = \frac{1}{n}$ , we get  $\exp 1 = (\exp \frac{1}{n})^n$ , or  $\exp \frac{1}{n} = e^{\frac{1}{n}}$ . This implies that

$$\exp\frac{n}{m} = (\exp\frac{1}{m})^n = (e^{\frac{1}{m}})^n = e^{\frac{n}{m}} \quad \text{for} \quad n \in \mathbb{Z}, \quad m \in \mathbb{N}.$$
(19)

Finally, by continuity of  $\exp x$  and of  $e^x$ , we conclude that  $\exp x = e^x$  for all  $x \in \mathbb{R}$ .

**Exercise 7.** With  $\log : (0, \infty) \to \mathbb{R}$  denoting the real logarithm, prove the following.

- $\log(ab) = \log a + \log b$ , for  $0 < a, b < \infty$ .
- $\log(a^x) = x \log a$ , for  $0 < a < \infty$  and  $x \in \mathbb{R}$ .

Our next task is to identify the kernel ker(exp) =  $\{z \in \mathbb{C} : \exp z = 1\}$  of exp :  $\mathbb{C} \to \mathbb{C}^{\times}$ .

**Lemma 8.** We have  $|\exp z| = \exp(\operatorname{Re} z)$  for  $z \in \mathbb{C}$ .

*Proof.* For  $y \in \mathbb{R}$ , we have  $\overline{(iy)^n} = (-iy)^n$ , and so

$$\sum_{n=0}^{m} \frac{(iy)^n}{n!} = \sum_{n=0}^{m} \frac{(-iy)^n}{n!} \quad \text{for any} \quad m \in \mathbb{N}.$$
 (20)

The right hand side of this equality converges to  $\exp(-iy)$  as  $m \to \infty$ . Moreover, the left hand side converges to  $\overline{\exp(iy)}$ , because of the general rule  $\lim \bar{z}_m = \overline{\lim z_m}$ . To conclude, we have  $\overline{\exp(iy)} = \exp(-iy)$ , and hence  $|\exp(iy)|^2 = \exp(iy)\overline{\exp(iy)} = \exp(iy)\exp(-iy) = 1$ .

Finally, if z = x + iy with  $x, y \in \mathbb{R}$ , then we have

$$\exp z| = |\exp(x)\exp(iy)| = |\exp x||\exp(iy)| = \exp x,$$
(21)

completing the proof.

By this lemma,  $|\exp z| = 1$  is equivalent to  $\exp(\operatorname{Re} z) = 1$ . Since  $\exp : \mathbb{R} \to (0, \infty)$  is a bijection,  $\exp(\operatorname{Re} z) = 1$  if and only if  $\operatorname{Re} z = 0$ .

**Corollary 9.** We have  $\{z \in \mathbb{C} : |\exp z| = 1\} = i\mathbb{R}$ , where  $i\mathbb{R} = \{ix : x \in \mathbb{R}\}$ .

**Theorem 10.** We have  $ker(exp) = iT\mathbb{Z}$  for some constant T > 0.

*Proof.* If  $\exp z = 1$ , then obviously  $|\exp z| = 1$ , and so by the preceding corollary, we have  $K = \ker(\exp) \subset i\mathbb{R}$ . It is clear that  $0 \in K$ , and so a natural question is whether or not K has any nonzero element. To answer this question, we note that the surjectivity of  $\exp : \mathbb{C} \to \mathbb{C}^{\times}$ , combined with the preceding corollary, implies that there is  $s \in \mathbb{R}$  with  $\exp(is) = -1$ , and so with  $\exp(2is) = 1$ . Obviously  $s \neq 0$ , and thus  $K \neq \{0\}$ .

We have the symmetry K = -K, because  $\exp z = 1$  implies that  $\exp(-z) = \frac{1}{\exp z} = 1$ . Since K contains numbers with positive imaginary parts, the number

$$T = \inf\{t > 0 : it \in K\},\tag{22}$$

is well defined. In order to show that  $iT \in K$ , let  $\{t_k\}$  be a sequence such that  $\{it_k\} \subset K$  and  $t_k \to T$  as  $k \to \infty$ . Then by continuity of the exponential,  $\exp(it_k) \to \exp(iT)$  as  $k \to \infty$ . On the other hand,  $\exp(it_k) = 1$  for all k, which implies that  $\exp(iT) = 1$ , that is,  $iT \in K$ . Furthermore, since  $\exp(inT) = \exp(iT)^n = 1$  for  $n \in \mathbb{Z}$ , we conclude that  $iT\mathbb{Z} \subset K$ .

Now we wish to show that T > 0. To this end, we write

$$\exp z - 1 = z + \frac{z^2}{2!} + \ldots = z \left( 1 + \frac{z}{2!} + \frac{z^2}{3!} + \ldots \right) = zg(z), \tag{23}$$

where we have introduced the function

$$g(z) = 1 + \frac{z}{2!} + \frac{z^2}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{z^n}{(n+1)!}.$$
 (24)

The convergence radius of the latter series is  $\infty$ , and so in particular we have  $g \in \mathscr{O}(\mathbb{C})$ . Since g(0) = 1, by continuity, g has no zeroes in a small open disk centred at 0. Hence in that disk, the only solution to  $\exp z = 1$  is z = 0, which means that T > 0.

Finally, suppose that  $r \in \mathbb{R}$  with  $ir \in K$ . Then there is  $n \in \mathbb{Z}$  such that  $nT \leq r < (n+1)T$ , or  $0 \leq r - nT < T$ . But  $\exp(ir - inT) = \exp(ir)\exp(-inT) = 1$ , hence r - nT = 0 by the minimal property of T. This proves that  $K \subset iT\mathbb{Z}$ .

**Remark 11.** Suppose that  $w, z \in \mathbb{C}$  satisfy  $\exp(z + w) = \exp(z)$ . Then  $\exp(z) \exp(w) = \exp(z)$ , that is, we have  $\exp(w) = 1$ , meaning that  $w \in iT\mathbb{Z}$ . One implication of this is that the periods of the exponential function are precisely the numbers inT with  $n \in \mathbb{Z}$ . Recall that  $w \in \mathbb{C}$  is called a *period* of a function f if f(z + w) = f(z) for all  $z \in \mathbb{C}$ . Another, quite strong implication is that if I is any half-open interval of length T, such as I = [0, T), then the complex exponential restricted to the horizontal strip  $\mathbb{R} + iI$  is bijective, where  $\mathbb{R} + iI = \{x + iy : x \in \mathbb{R}, y \in I\}$ .



FIGURE 3. Mapping properties of the complex exponential.

### 3. The argument

In Corollary 9 we have established that  $\exp^{-1}(S^1) = \{z \in \mathbb{C} : |\exp z| = 1\}$  is equal to the imaginary axis  $i\mathbb{R}$ . In view of Remark 11, this implies that the map  $p : \mathbb{R} \to S^1$  defined by  $p(t) = \exp(it)$  is surjective with the periods  $T\mathbb{Z}$ , where  $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ . Moreover, for any half-open interval I of length T, the function  $p : I \to S^1$  is bijective. In other words, every  $z \in \mathbb{C}$  with |z| = 1 can be written uniquely as z = p(t) with  $t \in I$ .

Supposing that  $\exp(x + iy) = u(x, y) + iv(x, y)$ , we have p(t) = u(0, t) + iv(0, t), and hence

$$p'(t) = \frac{\partial u}{\partial y}(0,t) + i\frac{\partial v}{\partial y}(0,t) = -\frac{\partial v}{\partial x}(0,t) + i\frac{\partial u}{\partial x}(0,t)$$
  
=  $i\left(\frac{\partial u}{\partial x}(0,t) + i\frac{\partial v}{\partial x}(0,t)\right) = i\exp(it) = i\exp(it) = ip(t),$  (25)

where we have used the Cauchy-Riemann equations in the second step, and  $\exp'$  denotes the complex derivative of exp. From this we infer that  $|p'(t)| = |\exp(it)| = 1$ , meaning that  $p: [0,T) \to S^1$  is an arc length parameterization of the unit circle  $S^1$ . Therefore, the arclength of the unit circle is equal to T. Moreover, since p'(0) = i, we have  $\operatorname{Im} p(t) > 0$  for all sufficiently small t > 0, see Figure 4(a).

**Definition 12.** We define the number  $\pi$  by  $\pi = \frac{T}{2}$ .

We will also use the shorthand notation  $e^z = \exp(z)$  for the exponential function. Thus every  $z \in \mathbb{C}^{\times}$  can be written as  $z = |z|e^{i\theta}$  with  $\theta \in \mathbb{R}$ , and moreover  $\theta$  is unique if one requires  $\theta \in I$  with any fixed half-open interval I of length  $2\pi$ .

Definition 13. We define the set-valued function, called the *argument*, by

$$\arg z = \left\{ t \in \mathbb{R} : e^{it} = \frac{z}{|z|} \right\}, \qquad z \in \mathbb{C}^{\times}.$$
(26)

It is customary to write

$$\arg z = \theta + 2\pi n, \qquad n \in \mathbb{Z},$$
(27)

for a fixed  $\theta \in \mathbb{R}$  which depends on z, and say that  $\arg z$  is a *multi-valued* function.

**Remark 14.** In the multi-valued formalism (27), it is understood that arg z returns *infinitely* many values  $\theta + 2\pi n$ ,  $n \in \mathbb{Z}$ , all at once, while in the set-valued formalism (26), what arg z returns is a *single object*, that is the set of all the numbers  $\theta + 2\pi n$  for  $n \in \mathbb{Z}$ . We will use these two formalisms interchangeably.

**Example 15.** Since  $e^0 = 1$ , we have

$$\arg 1 = 2\pi \mathbb{Z} = \{2\pi n : n \in \mathbb{Z}\}.$$
(28)

We have  $(e^{\pi i})^2 = e^{2\pi i} = 1$  and  $e^{\pi i} \neq 1$ , hence  $e^{\pi i} = -1$ , implying that

$$\arg(-1) = \pi + 2\pi\mathbb{Z} = \{\pi + 2\pi n : n \in \mathbb{Z}\}.$$
 (29)

Moreover, from  $(e^{\frac{\pi i}{2}})^2 = e^{\pi i} = -1$  we infer that either  $e^{\frac{\pi i}{2}} = i$  or  $e^{\frac{\pi i}{2}} = -i$ . Suppose that  $e^{\frac{\pi i}{2}} = -i$ . Then since  $\operatorname{Im} e^{it} > 0$  for small t > 0 and  $\operatorname{Im}(-i) < 0$ , the intermediate value theorem implies that the real valued function  $f(t) = \operatorname{Im} e^{it}$  has a zero at some t satisfying  $0 < t < \frac{\pi}{2}$ . In other words,  $e^{it} \in \mathbb{R}$  for some  $0 < t < \frac{\pi}{2}$ , and in light of the fact that  $|e^{it}| = 1$ , we have  $e^{it} = \pm 1$  for some  $0 < t < \frac{\pi}{2}$ . In either case, we get  $e^{2it} = 1$ , which impossible, since  $0 < 2t < \pi$ , and  $s = 2\pi$  is the smallest positive solution to  $e^{is} = 1$ . To conclude, we have

$$\arg i = \frac{\pi}{2} + 2\pi\mathbb{Z} = \left\{\frac{\pi}{2} + 2\pi n : n \in \mathbb{Z}\right\}.$$
(30)

**Exercise 16.** Compute  $\arg(-i)$ ,  $\arg(1+i)$ , and  $\arg(1-i)$ .

**Remark 17.** If arg  $z = \theta + 2\pi n$ ,  $n \in \mathbb{Z}$ , we have

$$z|e^{i\arg z} = |z|e^{i\theta + 2\pi in} = |z|e^{i\theta}e^{2\pi in} = ze^{2\pi in} = z, \qquad n \in \mathbb{Z}.$$
 (31)

Now recall that for  $A, B \subset \mathbb{C}$ , the sum set is defined as

$$A + B = \{a + b : a \in A, b \in B\}.$$
(32)

Then noting that

$$\arg w + \arg z = \{\tau + 2\pi n : n \in \mathbb{Z}\} + \{\theta + 2\pi n : n \in \mathbb{Z}\} = \{\tau + \theta + 2\pi n : n \in \mathbb{Z}\},$$
(33)

we can write

$$wz = |w|e^{i\arg w} \cdot |z|e^{i\arg z} = |w||z| \cdot e^{i(\arg w + \arg z)}.$$
(34)

In other words, when we multiply two complex numbers, the *magnitudes are multiplied* and the *arguments are added*.



(A) The map  $t \mapsto e^{it}$  is an arclength parameterization of the unit circle  $S^1$ . The inverse of this parameterization is arg z for  $z \in S^1$ .



(B) The graph of  $\arg z$ . The blue helix represents the graph of  $\arg z$  restricted to |z| = 1.

FIGURE 4. The parameterization  $e^{it}$  of  $S^1$ , and the multi-valued function  $\arg z$ .

**Definition 18.** Let F be a set-valued function, defined on some  $A \subset \mathbb{C}$ , and let  $\Omega \subset A$ . Then a single-valued function  $f \in \mathscr{C}(\Omega)$  is called a *(continuous) branch of* F *in*  $\Omega$ , if  $f(z) \in F(z)$ for all  $z \in \Omega$ .

**Definition 19.** The *principal branch* of  $\arg z$  is defined as

Arg 
$$z = \theta$$
, where  $e^{i\theta} = \frac{z}{|z|}$  and  $-\pi < t \le \pi$ . (35)

**Example 20.** We have  $\operatorname{Arg} 1 = 0$ ,  $\operatorname{Arg}(-1) = \pi$ , and  $\operatorname{Arg} i = \frac{\pi}{2}$ .

**Exercise 21.** Compute  $\operatorname{Arg}(-i)$ ,  $\operatorname{Arg}(1+i)$ , and  $\operatorname{Arg}(1-i)$ .

4. Logarithms

For  $z = \rho e^{i\theta} \in \mathbb{C}^{\times}$  and  $\zeta = \log \rho + i\theta$ , it is clear that

$$\exp(\zeta) = \exp(\log \rho) \exp(i\theta) = \rho \exp(i\theta) = z.$$
(36)

Now, if  $\exp(w) = z$ , then  $w = \zeta + 2\pi i n$  for some  $n \in \mathbb{Z}$ . Therefore, the solutions of the equation  $\exp(\zeta) = z$  are precisely the numbers  $\log \rho + i\theta + 2\pi i \mathbb{Z} = \log |z| + i \arg z$ .

**Definition 22.** We define the set-valued *complex logarithm*, by

$$\log z = \exp^{-1}(z) = \{ w \in \mathbb{C} : \exp w = z \}, \qquad z \in \mathbb{C}^{\times}.$$
(37)

It is customary to regard it as a multi-valued function, and simply write

$$\log z = \log |z| + i \arg z, \tag{38}$$

where "log" in the right hand side of course denotes the real logarithm.

Remark 23. The notation "log" is an overloaded notation:

- $\log x$  may mean the (single-valued) real logarithm, for  $x \in \mathbb{R}$  with x > 0.
- $\log z$  is the multi-valued complex logarithm, as we have just defined.
- Any branch of the complex logarithm is often denoted by  $\log z$  as well.

**Example 24.** We have

$$\log(-1) = \pi i + 2\pi i n, \qquad n \in \mathbb{Z},$$
  
$$\log i = \frac{\pi i}{2} + 2\pi i n, \qquad n \in \mathbb{Z},$$
(39)

and

$$\underbrace{\operatorname{complex}}_{\log x} \log x = \underbrace{\operatorname{log}}_{\log x} + 2\pi i n, \qquad n \in \mathbb{Z},$$

$$(40)$$

for  $x \in \mathbb{R}$  with x > 0.

**Definition 25.** The *principal branch* of  $\log z$  is defined as

$$\operatorname{Log} z = \log |z| + i\operatorname{Arg} z, \qquad z \in \mathbb{C}^-, \tag{41}$$

where  $\mathbb{C}^- = \mathbb{C} \setminus (-\infty, 0]$  is called the *slit-plane*.

Example 26. We have

$$\operatorname{Log}(-1) = \pi i, \qquad \operatorname{Log} i = \frac{\pi i}{2}, \tag{42}$$

and

$$\log x = \log x,\tag{43}$$

for  $x \in \mathbb{R}$  with x > 0, where "log" in the right hand side is the real logarithm.

**Remark 27.** (a) For  $z \in \mathbb{C}^{\times}$ , by construction, we have

$$\exp(\log z) = \exp(\log|z| + i\arg z) = |z|e^{\arg z} = z.$$
(44)

(b) However, the property  $\log e^x = x$  of the real logarithm does not extend to the complex logarithm. What we have instead is

$$\log(\exp z) = \log |\exp z| + i \arg \exp z = \log e^{\operatorname{Re} z} + i(\operatorname{Im} z + 2\pi n)$$
  
=  $\operatorname{Re} z + i \operatorname{Im} z + 2\pi i n = z + 2\pi i n, \quad n \in \mathbb{Z}.$  (45)

This is not surprising, since  $\log z$  is now a multi-valued function.

(c) We can ask if the property  $\log e^x = x$  holds for individual branches of logarithm. Let us consider the principal branch here as an example. First of all,  $\operatorname{Log}(\exp z)$  is *not* defined if  $\exp z \in \mathbb{R}$  and  $\exp z < 0$ , that is, if  $\operatorname{Im} z = \pi + 2\pi n$  for some  $n \in \mathbb{Z}$ . So if  $\pi + 2\pi(n-1) < \operatorname{Im} z < \pi + 2\pi n$  for some  $n \in \mathbb{Z}$ , then  $\operatorname{Arg} \exp z = \operatorname{Im} z - 2\pi n$ , and hence

$$\operatorname{Log}(\exp z) = \log |\exp z| + i\operatorname{Arg} \exp z = \log e^{\operatorname{Re} z} + i(\operatorname{Im} z - 2\pi n) = z - 2\pi i n.$$
(46)

This means that

$$Log(exp z) = z, \quad \text{if} \quad -\pi < Im z < \pi.$$
(47)

(d) For  $w, z \in \mathbb{C}^{\times}$ , we have

$$\log(wz) = \log|wz| + i \arg(wz) = \log|w| + \log|z| + i(\arg w + \arg z)$$
  
= log w + log z, (48)

where the equality should be understood as an equality between sets.

(e) Note that  $\operatorname{Arg}(wz) = \operatorname{Arg} w + \operatorname{Arg} z$  is not true in general. For example,  $\operatorname{Arg} 1 = 0$ , but  $\operatorname{Arg}(-1) + \operatorname{Arg}(-1) = 2\pi$ . If  $\operatorname{Arg}(wz) = \operatorname{Arg} w + \operatorname{Arg} z$  for some particular numbers w and z, then we would have

$$\operatorname{Log}(wz) = \operatorname{Log} w + \operatorname{Log} z. \tag{49}$$

A sufficient condition for  $\operatorname{Arg}(wz) = \operatorname{Arg} w + \operatorname{Arg} z$  to hold would be  $\operatorname{Arg} w, \operatorname{Arg} z \in (-\frac{\pi}{2}, \frac{\pi}{2})$ , that is,  $\operatorname{Re} w > 0$  and  $\operatorname{Re} z > 0$ .

**Theorem 28.** Let  $\ell \in \mathscr{C}(D_r(a))$ , with  $D_r(a) \subset \mathbb{C}^{\times}$ . Then the following are equivalent.

- (a)  $\ell$  is a branch of logarithm in  $D_r(a)$ .
- (b)  $\exp(\ell(a)) = a$  and  $\ell \in \mathcal{O}(D_r(a))$  with

$$\ell'(z) = \frac{1}{z} \qquad for \quad z \in D_r(a).$$
(50)

(c) There is some  $n \in \mathbb{Z}$  and  $\alpha \in \mathbb{C}$  with  $\exp \alpha = a$ , such that

$$\ell(z) = \lambda(\frac{z}{a}) + \alpha + 2\pi i n \quad for \quad z \in D_r(a),$$
(51)

where  $\lambda$  is the logarithmic series introduced in Theorem 3.

*Proof.* Suppose that  $\ell$  is a branch of logarithm in  $D_r(a)$ , and let  $\lambda_a(z) = \lambda(\frac{z}{a}) + \alpha$  with some  $\alpha \in \mathbb{C}$  satisfying  $\exp \alpha = a$ . Then by Theorem 3(b) the function  $\lambda_a$  is a branch of logarithm in  $D_r(a)$ , and so we have

$$\exp(\ell(z)) = z = \exp(\lambda_a(z)), \qquad z \in D_r(a), \tag{52}$$

which implies that

$$\exp(\ell(z) - \lambda_a(z)) = 1, \qquad z \in D_r(a), \tag{53}$$

or

$$\ell(z) - \lambda_a(z) = 2\pi i g(z), \qquad z \in D_r(a), \tag{54}$$

for some function  $g: D_r(a) \to \mathbb{Z}$ . Since  $\ell - \lambda_a$  is continuous, so is g, and hence g = const in  $D_r(a)$ . This means that

$$\ell(z) = \lambda_a(z) + 2\pi i n, \qquad z \in D_r(a), \tag{55}$$

for some constant  $n \in \mathbb{Z}$ , establishing the implication (a)  $\Longrightarrow$  (c).

The implication (c)  $\implies$  (b) is immediate from Theorem 3. To prove (b)  $\implies$  (a), we consider the function

$$f(z) = z \exp(-\ell(z)), \tag{56}$$

and compute

$$f'(z) = \exp(-\ell(z)) - z \exp(-\ell(z))\ell'(z) = \exp(-\ell(z)) - z \exp(-\ell(z)) \cdot \frac{1}{z} = 0, \quad (57)$$

which implies that f = const in  $D_r(a)$ . This means that f(z) = 1 for  $z \in D_r(a)$ , because

$$f(a) = a \exp(-\ell(a)) = \frac{a}{\exp(\ell(a))} = 1,$$
 (58)

and thus

$$\exp \ell(z) = \frac{1}{\exp(-\ell(z))} = \frac{z}{f(z)} = \frac{z}{f(a)} = z \quad \text{for} \quad z \in D_r(a),$$
(59)

completing the proof.

#### ELEMENTARY FUNCTIONS

### 5. Powers

For  $x, s \in \mathbb{R}$  with x > 0, we can define the real positive power  $x^s$  by  $x^s = e^{s \log x}$ , where  $\log x$  is the real logarithm. This can be extended to the complex setting as follows.

**Definition 29.** For  $\sigma \in \mathbb{C}$ , we define the multi-valued *complex power*  $z \mapsto z^{\sigma}$  by

$$z^{\sigma} = \exp(\sigma \log z), \qquad z \in \mathbb{C}^{\times}.$$
 (60)

The *principal value* of the power  $z^{\sigma}$  is defined as

p.v. 
$$z^{\sigma} = \exp(\sigma \operatorname{Log} z), \qquad z \in \mathbb{C}^-.$$
 (61)

**Remark 30.** The notation  $z^{\sigma}$  is even more overloaded than "log":

- $x^s$  may mean the (single-valued) real power, for  $x, s \in \mathbb{R}$  with x > 0.
- $z^{\sigma}$  is the multi-valued complex power, as we have just defined.
- Any branch of the complex power is often denoted by  $z^{\sigma}$  as well.
- The notation "p.v." in the principal value we have introduced is not completely standard, and therefore often omitted, resulting in the notation  $z^{\sigma}$  also for p.v.  $z^{\sigma}$ .

**Example 31.** We have

$$1^{\sigma} = \exp(2\pi\sigma i n), \qquad n \in \mathbb{Z},$$
  
p.v.  $1^{\sigma} = \exp(\sigma \cdot 0) = 1,$   
p.v.  $i^{i} = \exp(i \cdot \frac{\pi i}{2}) = e^{-\frac{\pi}{2}}.$  (62)

**Remark 32.** The following simple properties can be derived.

- p.v.  $x^s = \exp(s \operatorname{Log} x) = x^s$  for  $x, s \in \mathbb{R}$  with x > 0, where  $x^s$  in the right hand side is the real positive power.
- $z^0 = \exp(0) = 1.$
- $z^1 = \exp(\log z) = z$ .
- $z^{-1} = \exp(\log z)$   $z^{-1}$   $z^{-1} = \exp(-\log z) = \frac{1}{z}$ .  $z^n = \exp(n\log z) = \exp(\log z) \cdots \exp(\log z) = \underbrace{z \cdot z \cdots z}_{n \text{ times}}$ .

**Exercise 33** (Abel 1826). Show that

p.v. 
$$z^{s+it} = |z|^s e^{-t\operatorname{Arg}z} \left( \cos\left(s\operatorname{Arg}z + t\log|z|\right) + i\sin\left(s\operatorname{Arg}z + t\log|z|\right) \right),$$
 (63)

for  $z \in \mathbb{C}^-$  and  $s, t \in \mathbb{R}$ .

**Remark 34** (Powers with real exponents). For  $z = |z|e^{i\theta} \in \mathbb{C}^{\times}$  and  $s \in \mathbb{R}$ , we have

$$z^{s} = \exp(s \log |z|) \exp(is \arg z) = |z|^{s} e^{is\theta} e^{2\pi sik}, \qquad k \in \mathbb{Z},$$
(64)

where  $|z|^s$  is the real positive power. If s is *irrational*, then there is no  $n \in \mathbb{Z}$  and  $k \in \mathbb{Z}$  that satisfy  $2\pi sk = 2\pi n$  except n = k = 0, and hence  $z^s$  has infinitely many distinct values. On the other hand, if s is rational, and say,  $s = \frac{p}{q}$  with  $p \in \mathbb{Z}$  and  $q \in \mathbb{N}$  minimal, then

$$e^{2\pi sik} = e^{2\pi si(mq+r)} = e^{2\pi i pm} e^{2\pi sir} = e^{2\pi sir},$$
(65)

where k = mq + r with  $m \in \mathbb{Z}$  and  $0 \le r < q$ , implying that  $z^s$  has exactly q distinct values.

**Remark 35** (Roots). For  $z = |z|e^{i\theta} \in \mathbb{C}^{\times}$  and  $n \in \mathbb{N}$ , we define the *n*-th root of z to be

$$\sqrt[n]{z} = z^{\frac{1}{n}} = \sqrt[n]{|z|} e^{i\theta/n} e^{2\pi i k/n}, \qquad k \in \mathbb{Z},$$
(66)

where  $\sqrt[n]{|z|}$  is the real positive *n*-th root. It is easily checked that  $\sqrt[n]{z}$  has exactly *n* distinct values, corresponding to, e.g.,  $k = 0, 1, \ldots, n-1$ . We have

$$(\sqrt[n]{z})^n = (\sqrt[n]{|z|})^n (e^{i\theta/n})^n (e^{2\pi ik/n})^n = |z|e^{i\theta}e^{2\pi ik} = z,$$
(67)

so (66) with any fixed k is a right inverse of the function  $z \mapsto z^n$ . We claim that all right inverses are obtained in this manner, in the sense that  $\sqrt[n]{z} = \{w \in \mathbb{C} : w^n = z\}$ . To prove this claim, let  $w = \rho e^{i\tau}$ , and require

$$w^n = \rho^n e^{i\tau n} = |z|e^{i\theta}.$$
(68)

Since  $|w^n| = \rho^n$ , we infer that  $\rho^n = |z|$ , and hence  $\rho = \sqrt[n]{|z|}$ . Furthermore,  $e^{i\tau n} = e^{i\theta}$  is equivalent to the condition that  $\tau n = \theta + 2\pi i k$  for some  $k \in \mathbb{Z}$ , or

$$w = \rho e^{i\theta/n} e^{2\pi i k/n}, \qquad k \in \mathbb{Z},$$
(69)

establishing the claim.

### 6. Circular functions

Definition 36. We define the (circular) cosine and the (circular) sine, respectively, by

$$\cos z = \frac{\exp(iz) + \exp(-iz)}{2} \quad \text{and} \quad \sin z = \frac{\exp(iz) - \exp(-iz)}{2i}, \quad (70)$$

for  $z \in \mathbb{C}$ .

**Remark 37.** For  $t \in \mathbb{R}$ , we have

$$\cos t = \frac{\exp(it) + \exp(-it)}{2} = \operatorname{Re} e^{it},$$
(71)

and

$$\sin t = \frac{\exp(it) - \exp(-it)}{2i} = \operatorname{Im} e^{it},\tag{72}$$

which, in light of the fact that  $t \mapsto e^{it}$  is an arclength parameterization of the unit circle  $S^1$ , shows that Definition 36 extends the usual geometric definition of  $\cos t$  and  $\sin t$  to complex values of t, cf. Figure 5.



FIGURE 5. The functions  $\cos t$  and  $\sin t$  for real values of t.

Remark 38. The following properties can easily be derived from Definition 36.

(a)  $\exp(iz) = \cos z + i \sin z$  for  $z \in \mathbb{C}$  (Euler 1748).

- (b)  $\cos(-z) = \cos z$  and  $\sin(-z) = -\sin z$  for  $z \in \mathbb{C}$ .
- (c)  $\cos^2 z + \sin^2 z = 1$  for  $z \in \mathbb{C}$ .

- (d)  $(\cos z)' = -\sin z$  and  $(\sin z)' = \cos z$  for  $z \in \mathbb{C}$ .
- (e)  $\cos(w+z) = \cos w \cos z \sin w \sin z$  for  $w, z \in \mathbb{C}$ .
- (f)  $\sin(w+z) = \sin w \cos z + \cos w \sin z$  for  $w, z \in \mathbb{C}$ .

**Theorem 39.** The maps  $\cos : \mathbb{C} \to \mathbb{C}$  and  $\sin : \mathbb{C} \to \mathbb{C}$  are surjective.

*Proof.* Given  $w \in \mathbb{C}$ , consider the equation  $\cos z = w$ , that is,

$$\exp(iz) + \exp(-iz) = 2w. \tag{73}$$

With  $u = \exp(iz)$ , this is equivalent to  $u + \frac{1}{u} = 2w$ , or

$$u^2 - 2wu + 1 = 0. (74)$$

We see that u = 0 is not a solution. By writing

$$(u-w)^2 = u^2 - 2wu + w^2 = w^2 - 1, (75)$$

we find the solution u in terms of the multi-valued square root as

$$u = w + \sqrt{w^2 - 1}.$$
 (76)

Since  $u \neq 0$ , we can solve  $u = \exp(iz)$  as  $z = -i\log u$ . Note that to each  $w \in \mathbb{C}$ , in general there corresponds two distinct values of u, and to each value of u, there corresponds infinitely many distinct values of z. This can be written as

$$z = \cos^{-1}(w) = -i\log(w + \sqrt{w^2 - 1}), \tag{77}$$

where the composition of multi-valued functions is interpreted in the obvious way.

The equation  $\sin z = w$  can similarly be solved by

$$z = \sin^{-1}(w) = -i\log(w + \sqrt{w^2 + 1}), \tag{78}$$

completing the proof.

Exercise 40. Prove the following.

(a)  $\sin z = 0$  if and only if  $z = \pi n$  for some  $n \in \mathbb{Z}$ .

(b)  $\cos z = 0$  if and only if  $z = \frac{\pi}{2} + \pi n$  for some  $n \in \mathbb{Z}$ .

(c) The periods of sin are precisely the numbers  $2\pi n$ ,  $n \in \mathbb{Z}$ .

(d) The periods of  $\cos$  are precisely the numbers  $2\pi n$ ,  $n \in \mathbb{Z}$ .

**Exercise 41.** Show that  $\cos z = \cos w$  if and only if either  $z + w = 2\pi n$  for some  $n \in \mathbb{Z}$ , or  $z - w = 2\pi n$  for some  $n \in \mathbb{Z}$ .

**Exercise 42.** Let  $\cot : \mathbb{C} \setminus \pi\mathbb{Z} \to \mathbb{C}$  and  $\tan : \mathbb{C} \setminus (\frac{\pi}{2} + \pi\mathbb{Z}) \to \mathbb{C}$  be defined by

$$\cot z = \frac{\cos z}{\sin z}$$
, and  $\tan z = \frac{\sin z}{\cos z}$ ,

respectively. Prove the following.

(a) The functions cot and tan are holomorphic in their respective domains, with

$$(\cot z)' = -\frac{1}{\sin^2 z}$$
, and  $(\tan z)' = \frac{1}{\cos^2 z}$ .

(b) The periods of cot and tan are the numbers  $\pi n, n \in \mathbb{Z}$ .

(c) With

$$\arctan z = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots, \qquad |z| < 1,$$

we have

$$(\arctan z)' = \frac{1}{1+z^2}$$
 and  $\arctan(\tan z) = z$  for  $|z| < 1$ .