MATH 249 ASSIGNMENT 4

NOT TO BE HANDED IN

- 1. Compute the integrals $\int_{C_r} z^n dz$ for $n \in \mathbb{Z}$, where $C_r = \partial D_r$ and r > 0. Recall that C_r has the counter-clockwise orientation.
- 2. Evaluate the integrals

$$\int_0^{+\infty} \frac{x^m dx}{1+x^n}, \quad \text{and} \quad \int_0^{\pi} \frac{d\theta}{a+\sin^2\theta},$$

where m, n are integers satisfying $1 \le m \le n-2$, and a > 0 is real.

- 3. Calculate the residues of $\tan \pi z$ and $\cot \pi z$ at their poles.
- 4. Show that the sum of the residues of a rational function (together with the residue at ∞) is equal to zero. As part of this exercise you need to introduce a natural definition for the residue at ∞ .
- 5. Let f be holomorphic and bounded in a punctured neighbourhood of 0. Show that

$$g(z) = \begin{cases} z^2 f(z) & \text{for } z \neq 0, \\ 0 & \text{for } z = 0, \end{cases}$$

is holomorphic in a neighbourhood of 0.

- 6. Let $c \in \mathbb{C}$ be an isolated essential singular point of f. Prove that for any given $\alpha \in \mathbb{R}$ and an arbitrarily small r > 0, there exists $z \in D_r(c) \setminus \{c\}$ such that $\Re f(z) = \alpha$.
- 7. Let $\gamma : [a, b] \to A$ be a piecewise differentiable curve, where $A \subset \mathbb{C}$ is an open set, and let $g : A \times \Omega \to \mathbb{C}$ be a continuous function of two complex variables, where $\Omega \subset \mathbb{C}$ is also an open set. Assume that for any fixed $w \in A$, the function $z \mapsto g(w, z)$ is holomorphic in Ω . Then prove that

$$f(z) = \int_{\gamma} g(w, z) \,\mathrm{d}w,$$

is holomorphic in Ω .

Date: Winter 2015.