Problem 1. Prove that

Proof. We note by the symmetry of f(z) = %sin x, 2 foo sinz _ (90 sinz e also know that f_RR Sig’”d;v =
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Figure 1: Contours used in solution

Now note that on —cp we have z = Rexp (it) = Rcost + iRsint, thus

/ expiz & — /Tr exp (iR cost) exp (—Rsint) iRexp (it)dt
—cp  ? 0 Rexp (it)

Then we obtain the estimate

exp iz
—Cr z

This integral on the right vanishes, because sint > 2t¢/7 in the interval [0,7/2] (proof: sin is concave), and

thus 12 p
/0 exp (—Rsint)dt < /0 exp (—271_Rt>dt = % (1 — exp <_f>)

exp iz

™ ™ /2
/ exp (iR cost) exp (—Rsint)i dt’ S/ exp (—Rsint) = 2/ exp (—Rsint)dt (3)
0 0 0

and this clearly vanishes as R — oco. thus / — 0 as R — oo. Now it remains to evaluate

Cr %

‘/C eXIZ)iZdZZ/CEi+f(z)dZ (4)

€




Where f is bounded (say, by M) as z — 0. Then

1 1
/ f—I—f(z)sz/ —dz + Mme (5)
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Thus fCe % + f(2)dz — fc %dz as € — 0. This second integral is easy to evaluate, and is ¢w. Recalling that

J o sinz/z =Im 3§ [ e /xdx, we obtain the desired result

Problem 2. Prove that
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Proof. Here we will use the fact that f fooo e~ dy = /7, which has a standard proof (using polar coordinates)

which we will not reproduce here. By symmetry we can conclude that fooo e~ dy = V7/2. We will now

integrate e=*" over the following contours: O
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Figure 2: contours used in problem 2

Then we have

. _Z2
lim e * dz=
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We also have that limpg_, fb e=*"dz = 0. To see why this is so, we let z = Rexpit, t € [0,7/4], so that
22 = R%?exp 2it = R? cos 2t + 1R?sin 2t, and thus

/e_z2dz
b

Since cos(2t) > 1 — 4t/m, this integral on the right is less than

/4 /4
= / exp (—R2 cos 2t) exp (—iR2 sin 2t)iR exp (it)dt| < R/ exp (—R2 cos 2t) dt
0 0

exp (R?) =1 _1—exp(—R?)
4R? - R

w/4
R/ exp (7]{2) exp (4R2t7r)dt = Rmexp (*RQ)
0

and this clearly vanishes as R — oo. Finally, we evaluate along —c¢, where we have z = texp (7/4) t € [0, o],



which gives us

/_ exp (—2%)dz = /OOO exp (—it®) exp (r/4)dt = /000 (cost® — isint?) 1\;—; dt (6)

Performing more algebraic manipulations, we obtain
1 o0
/ €xp (—22)dz =— / (cos t? + sin t2) +1 (cos t? — sin t2) dt
—c \/i 0

By cauchy’s theorem, we can conclude that [ e~ dz = 1, e~ = /7/2+ 0i, and thus

oo o0 oo /2
/ cos t2dt = / sint?dt and / cos t3dt = ver
0 0 0 4

imaginary part

which is what we wanted to show.

Problem 3. FEvaluate the integrals
/ exp (—ax) sin bz dx and / exp (—ax) cos bz dx
0 0

where a and b are positive real constants.

Solution: These are clearly the real and imaginary part of the integral

/OO exp ((—a +ib)z)dz
0

to solve this problem, we will use the following contours
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Here the curve 3 is the ray aligned with a+ib. First it is clear that Rlim exp ((—a + ib)z)dz is the desired
—r 00
integral. We also have “

a+ib

lim [ exp((—a+ib)z)dz = /OOO exp ((—a + ib)(a + ib)t)(a+ib) = (a+ib) /OOO exp (—(a® + b*)t) = s

R—o0 5

It remains to show that / exp ((—a +ib)z)dz vanishes as R goes to infinity. To prove this, let v be

.
parametrized by Rexp (it), where t € [0,0], where § < 7/2; this follows from the fact that a,b are pos-



Case 1.

Case 2.

Case 3.

itive. Then we have

6
/ exp ((—a +1ib)z)dz = / exp (—R(acost + bsint) + iR(bcost — asint))Riexp (it)dt
vy 0

Taking absolute values, we can conclude that this integral vanishes if the integral

/2
/ Rexp (—R(acost + bsint))dt
0

vanishes. This is true because the minimum value of acost + bsint in (0,7/2), let’s call it m, is clearly

positive and so since Rexp (—Rm) — 0 as R — oo, we have the desired result. Thus

a

a2+ b2 (7)

/ exp (—ax) sin bz dx = and / exp (—ax) cosbx dr =
0 0

Problem 4 (Schwarz reflection principle). Let Q@ C H be an open set and let ¥ ={z€ 9Q : Imz=0} be a
nonempty open subset of the real axis. Suppose that f is holomorphic in Q, continuous on QU X, and takes
real values on . Let Q = QUXUQ, where here Q denotes the image of Q under the mapping z — z. Define
the function F € C(Q) by

f(2) z€QUX

ﬁ z €

Prove that F is holomorphic in .

Proof. The only thing to prove is that F is differentiable at every point z in it’s domain. We will prove this

in cases

z € (), then by the openness of ) there exists a neighborhood N C Q around z such that F' = f on N. Since
f is holomorphic on N, F'is holomorphic on N.

z € Q. It is clear that z ~ Z is an open mapping, and so there exists a neighborhood N C  which contains

z and thus N C ) contains Z. Pick h so small so that z + h € N, and consider the difference

F(z+h) — F(2) (f(z + h})L - f(z)>

- —

By the holomorphicity of f in 2, we can conclude that the right side converges to f'(z) as h — 0, that is

=f'()

h—0 h—0

- F(z+h)—F(z) _ i (f(z+h) - f(z))

This proves that F is holomorphic in €. Furthermore, since f(z) € R for z € ¥, we can conclude that for

u € Q we have lim,_,, F(u) = lim,_,, f(u) = f(2), and so F extends continuously to ¥ from both { and €.

Now consider the case where z € ¥. Now I claim that for every point z in ¥ there exists a ball B which



is centered on z such that BNH C Q. To prove this claim, note that R and bdry Q2 are closed, and so
Y = bdry QN R is closed. But since ¥ is also open by hypothesis, we must conclude that ¥ = R or ¥ = (),
since R is connected. However, this seems a bit too restrictive, and so we won’t use it in our proof. Rather,
we shall prove a weaker claim that F' is holomorphic on the interior of ¥ with respect to R, which we shall
denote by ¥° (e.g. if ¥ = [0,1], then X° is (0,1), not (}). Then X° is an open subset of bdry Q (with the
relative topology), and so for each point z of X° there exists an open ball B around z which contains none
of bdry 2 — ¥°. Now consider B NH. By the fact that z € ¥, we can conclude that B N H intersects €2, but

if BN H also intersects the exterior of {2, then we can write
BNH =QnN(BNH) U exterior Q N (B N H)

Thus writing B N H as the union of two non-empty disjoint open sets, contradicting the fact that B N H is
connected. This proves that BNH C Q. With all that, we can conclude that BNH = BN H C  and
BNR C X2, and so B is completely contained in Q.

Now we will show that F' is holomorphic at z (which is the centre of B). To do, we will use Morera’s theorem,
and prove that the integral of F' over every triangle T in B vanishes. The proof is quite simple: if T does
not interesect the real axis, then we are done, for then the triangle is contained entirely in either Q or €,
where F' is holomorphic. If the triangle does intersect the real axis, we can decompose the triangle as in the

following picture

i

Figure 3: Triangle intersecting R

Since this is the integral of F over two polygonal paths contained in the closure of Q and Q respectively,
which are the limits of triangles strictly contained in  and §, we can conclude by continuity that the integral

of F vanishes over the entire triangle. This proves that F' is holomorphic on B.

Problem 5. Show that an entire analytic function with bounded real part must be constant.

Proof. We will use the fact that if f is entire and f is bounded then f is constant. This was proved in class,

and is known as Liouville’s theorem.

Suppose that f has bounded real part, then consider expof. By the fact that |exp(f(2))| = exp(Re(f(z))),



we can conclude that that expof is totally bounded. Thus exp of is constant, and so clearly f must also be

constant. |

Problem 6. Let f be entire and suppose that |f(z)| < M(1 + \/|z|) for all = € C, with some constant
M > 0. Show that f is constant.

Proof. We will use that fact that if f is entire then

k!
6= g |,

d¢

for any circle Cr (with radius R) containing z. Then we can conclude that

‘f(k)(z)‘<k!/c ‘ f(Q)

k!
<5 de‘gM(l—#\/E)ﬁ

Sending R — oo, we see that f(*)(z) vanishes for all z and for all k > 1. In particular f'(z) = 0 for all z and
thus f is constant on C. O

Problem 7. Let f be an entire function satisfying |f(z)] — oo as |z| = oo. Show that f : C — C is

surjective. Derive the fundamental theorem of algebra as a corollary.

Proof. First note that if f satisfies the hypotheses of the theorem, then so does f — ¢ for any ¢ € C. Then
there exists a disk D so large that |f — {| > 1 outside this disk, and in particular, —— < 1 outside of

D. Now since f — ( is clearly not constant, we can conclude that 1/(f — ¢) is also not constant, and thus
1/(f — ¢) is unbounded. By the fact that 1/(f — ¢) < 1 outside of D, we must conclude that 1/(f — ¢) is
unbounded on the inside of D. But this implies that 1/(f — {) has some discontinuities in D, which can only

occur if there exists some z such that f(z) = ¢. This proves surjectivity.

Now to prove the fundamental theorem of algebra as corollary, let f be a polynomial of degree n. Then
1F(z)| > alz|" —b|z|""" for some a,b € R (this follows from f(z) = apz™ + --- + ag, and the triangle
inequality). But for large |z|, a|z|™ — b|z|""" clearly gets arbitarily large, and thus | f(z)| — oo as |z| — co.

We can therefore use the above theorem to prove that there exists a z such that f(z) = 0. O



