
Problem 1. Prove that ∫ ∞
0

sinx

x
dx =

π

2

Proof. We note by the symmetry of f(x) = 1
x sinx, 2

∫∞
0

sin x
x =

∫ +∞
−∞

sin x
x . We also know that

∫ R
−R

sin x
x dx =

Im
∫ R
−R

eix

ix , and so we only have to calculate

lim
ε→0,R→∞

∫
l−

eix

x
dx+

∫
l+

eix

x
dx (1)

where we are using the contours shown below. By Cauchy’s theorem, we can conclude that∫ ∞
−∞

eix

x
dx =

∫
cε

eiz

z
dz +

∫
cR

ez

z
dz (2)

cε

cR

l− l+

Figure 1: Contours used in solution

Now note that on −cR we have z = R exp (it) = R cos t+ iR sin t, thus∫
−CR

exp iz

z
dz =

∫ π

0

exp (iR cos t) exp (−R sin t)

R exp (it)
iR exp (it)dt

Then we obtain the estimate∣∣∣∣∫
−CR

exp iz

z
dz

∣∣∣∣ =

∣∣∣∣∫ π

0

exp (iR cos t) exp (−R sin t)i dt

∣∣∣∣ ≤ ∫ π

0

exp (−R sin t) = 2

∫ π/2

0

exp (−R sin t)dt (3)

This integral on the right vanishes, because sin t ≥ 2t/π in the interval [0, π/2] (proof: sin is concave), and

thus ∫ π/2

0

exp (−R sin t)dt ≤
∫ π/2

0

exp

(
−2Rt

π

)
dt =

π

2R

(
1− exp

(
−R
π

))
and this clearly vanishes as R→∞. thus

∫
CR

exp iz

z
→ 0 as R→∞. Now it remains to evaluate

∫
Cε

exp iz

z
dz =

∫
Cε

1

z
+ f(z)dz (4)
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Where f is bounded (say, by M) as z → 0. Then∫
Cε

1

z
+ f(z)dz ≤

∫
Cε

1

z
dz +Mπε (5)

Thus
∫
Cε

1
z + f(z)dz →

∫
Cε

1
zdz as ε→ 0. This second integral is easy to evaluate, and is iπ. Recalling that∫∞

0
sinx/x = Im 1

2

∫∞
−∞ eix/x dx, we obtain the desired result

∫ ∞
0

sinx

x
dx =

π

2

Problem 2. Prove that ∫ ∞
0

sinx2 dx =

∫ ∞
0

cosx2 dx =

√
π

2
√

2

Proof. Here we will use the fact that
∫∞
−∞ e−z

2

dz =
√
π, which has a standard proof (using polar coordinates)

which we will not reproduce here. By symmetry we can conclude that
∫∞
0
e−z

2

dz =
√
π/2. We will now

integrate e−z
2

over the following contours:

π

4

a

c b

0

R

Figure 2: contours used in problem 2

Then we have

lim
R→∞

∫
a

e−z
2

dz =

√
π

2

We also have that limR→∞
∫
b
e−z

2

dz = 0. To see why this is so, we let z = R exp it, t ∈ [0, π/4], so that

z2 = R2 exp 2it = R2 cos 2t+ iR2 sin 2t, and thus

∣∣∣∣∫
b

e−z
2

dz

∣∣∣∣ =

∣∣∣∣∣
∫ π/4

0

exp
(
−R2 cos 2t

)
exp

(
−iR2 sin 2t

)
iR exp (it)dt

∣∣∣∣∣ ≤ R
∫ π/4

0

exp
(
−R2 cos 2t

)
dt

Since cos(2t) ≥ 1− 4t/π, this integral on the right is less than

R

∫ π/4

0

exp
(
−R2

)
exp

(
4R2tπ

)
dt = Rπ exp

(
−R2

)exp
(
R2
)
− 1

4R2
≤

1− exp
(
−R2

)
R

and this clearly vanishes as R→∞. Finally, we evaluate along −c, where we have z = t exp (π/4) t ∈ [0,∞],
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which gives us ∫
−c

exp
(
−z2

)
dz =

∫ ∞
0

exp
(
−it2

)
exp (π/4)dt =

∫ ∞
0

(
cos t2 − i sin t2

) 1 + i√
2
dt (6)

Performing more algebraic manipulations, we obtain∫
−c

exp
(
−z2

)
dz =

1√
2

∫ ∞
0

(
cos t2 + sin t2

)
+ i
(
cos t2 − sin t2

)
dt

By cauchy’s theorem, we can conclude that
∫
−c e

−z2dz =
∫
a
e−z

2

=
√
π/2 + 0i, and thus

∫ ∞
0

cos t2dt =

∫ ∞
0

sin t2dt︸ ︷︷ ︸
imaginary part

and

∫ ∞
0

cos t2dt =

√
2π

4

which is what we wanted to show.

Problem 3. Evaluate the integrals∫ ∞
0

exp (−ax) sin bx dx and

∫ ∞
0

exp (−ax) cos bx dx

where a and b are positive real constants.

Solution: These are clearly the real and imaginary part of the integral∫ ∞
0

exp ((−a+ ib)z)dz

to solve this problem, we will use the following contours

α

β

γ

0

R

Here the curve β is the ray aligned with a+ ib. First it is clear that lim
R→∞

∫
α

exp ((−a+ ib)z)dz is the desired

integral. We also have

lim
R→∞

∫
β

exp ((−a+ ib)z)dz =

∫ ∞
0

exp ((−a+ ib)(a+ ib)t)(a+ib) = (a+ib)

∫ ∞
0

exp
(
−(a2 + b2)t

)
=

a+ ib

a2 + b2

It remains to show that

∫
γ

exp ((−a+ ib)z)dz vanishes as R goes to infinity. To prove this, let γ be

parametrized by R exp (it), where t ∈ [0, θ], where θ < π/2; this follows from the fact that a, b are pos-
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itive. Then we have∫
γ

exp ((−a+ ib)z)dz =

∫ θ

0

exp (−R(a cos t+ b sin t) + iR(b cos t− a sin t))Ri exp (it)dt

Taking absolute values, we can conclude that this integral vanishes if the integral

∫ π/2

0

R exp (−R(a cos t+ b sin t))dt

vanishes. This is true because the minimum value of a cos t + b sin t in (0, π/2), let’s call it m, is clearly

positive and so since R exp (−Rm)→ 0 as R→∞, we have the desired result. Thus∫ ∞
0

exp (−ax) sin bx dx =
b

a2 + b2
and

∫ ∞
0

exp (−ax) cos bx dx =
a

a2 + b2
(7)

Problem 4 (Schwarz reflection principle). Let Ω ⊂ H be an open set and let Σ = { z ∈ ∂Ω : Im z = 0 } be a

nonempty open subset of the real axis. Suppose that f is holomorphic in Ω, continuous on Ω ∪Σ, and takes

real values on Σ. Let Ω̃ = Ω∪Σ∪Ω, where here Ω denotes the image of Ω under the mapping z 7→ z. Define

the function F ∈ C(Ω̃) by

F (z) =


f(z) z ∈ Ω ∪ Σ

f(z) z ∈ Ω

Prove that F is holomorphic in Ω̃.

Proof. The only thing to prove is that F is differentiable at every point z in it’s domain. We will prove this

in cases

Case 1. z ∈ Ω, then by the openness of Ω there exists a neighborhood N ⊂ Ω around z such that F = f on N . Since

f is holomorphic on N , F is holomorphic on N .

Case 2. z ∈ Ω. It is clear that z 7→ z is an open mapping, and so there exists a neighborhood N ⊂ Ω which contains

z and thus N ⊂ Ω contains z. Pick h so small so that z + h ∈ N , and consider the difference

F (z + h)− F (z)

h
=

(
f(z + h)− f(z)

h

)
By the holomorphicity of f in Ω, we can conclude that the right side converges to f ′(z) as h→ 0, that is

lim
h→0

F (z + h)− F (z)

h
= lim
h→0

(
f(z + h)− f(z)

h

)
= f ′(z)

This proves that F is holomorphic in Ω. Furthermore, since f(z) ∈ R for z ∈ Σ, we can conclude that for

u ∈ Ω we have limu→z F (u) = limu→z f(u) = f(z), and so F extends continuously to Σ from both Ω and Ω.

Case 3. Now consider the case where z ∈ Σ. Now I claim that for every point z in Σ there exists a ball B which
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is centered on z such that B ∩ H ⊂ Ω. To prove this claim, note that R and bdry Ω are closed, and so

Σ ≡ bdry Ω ∩ R is closed. But since Σ is also open by hypothesis, we must conclude that Σ = R or Σ = ∅,
since R is connected. However, this seems a bit too restrictive, and so we won’t use it in our proof. Rather,

we shall prove a weaker claim that F is holomorphic on the interior of Σ with respect to R, which we shall

denote by Σo (e.g. if Σ = [0, 1], then Σo is (0, 1), not ∅). Then Σo is an open subset of bdry Ω (with the

relative topology), and so for each point z of Σo there exists an open ball B around z which contains none

of bdry Ω−Σo. Now consider B ∩H. By the fact that z ∈ Σ, we can conclude that B ∩H intersects Ω, but

if B ∩H also intersects the exterior of Ω, then we can write

B ∩H = Ω ∩ (B ∩H) ∪ exterior Ω ∩ (B ∩H)

Thus writing B ∩ H as the union of two non-empty disjoint open sets, contradicting the fact that B ∩ H is

connected. This proves that B ∩ H ⊂ Ω. With all that, we can conclude that B ∩H = B ∩ H ⊂ Ω̄ and

B ∩ R ⊂ Σo, and so B is completely contained in Ω̃.

Now we will show that F is holomorphic at z (which is the centre of B). To do, we will use Morera’s theorem,

and prove that the integral of F over every triangle T in B vanishes. The proof is quite simple: if T does

not interesect the real axis, then we are done, for then the triangle is contained entirely in either Ω or Ω̄,

where F is holomorphic. If the triangle does intersect the real axis, we can decompose the triangle as in the

following picture

Figure 3: Triangle intersecting R

Since this is the integral of F over two polygonal paths contained in the closure of Ω and Ω̄ respectively,

which are the limits of triangles strictly contained in Ω and Ω̄, we can conclude by continuity that the integral

of F vanishes over the entire triangle. This proves that F is holomorphic on B.

Problem 5. Show that an entire analytic function with bounded real part must be constant.

Proof. We will use the fact that if f is entire and f is bounded then f is constant. This was proved in class,

and is known as Liouville’s theorem.

Suppose that f has bounded real part, then consider exp ◦f . By the fact that |exp(f(z))| = exp(Re(f(z))),
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we can conclude that that exp ◦f is totally bounded. Thus exp ◦f is constant, and so clearly f must also be

constant.

Problem 6. Let f be entire and suppose that |f(z)| ≤ M(1 +
√
|z|) for all z ∈ C, with some constant

M > 0. Show that f is constant.

Proof. We will use that fact that if f is entire then

f (k)(z) =
k!

2πi

∫
CR

f(ζ)

(ζ − z)k+1
dζ

for any circle CR (with radius R) containing z. Then we can conclude that

∣∣∣f (k)(z)∣∣∣ ≤ k!

2π

∫
CR

∣∣∣∣ f(ζ)

(ζ − z)k+1

∣∣∣∣ dζ ≤M(1 +
√
R)

k!

Rk

Sending R→∞, we see that f (k)(z) vanishes for all z and for all k ≥ 1. In particular f ′(z) = 0 for all z and

thus f is constant on C.

Problem 7. Let f be an entire function satisfying |f(z)| → ∞ as |z| → ∞. Show that f : C → C is

surjective. Derive the fundamental theorem of algebra as a corollary.

Proof. First note that if f satisfies the hypotheses of the theorem, then so does f − ζ for any ζ ∈ C. Then

there exists a disk D so large that |f − ζ| ≥ 1 outside this disk, and in particular,
1

f − ζ
≤ 1 outside of

D. Now since f − ζ is clearly not constant, we can conclude that 1/(f − ζ) is also not constant, and thus

1/(f − ζ) is unbounded. By the fact that 1/(f − ζ) ≤ 1 outside of D, we must conclude that 1/(f − ζ) is

unbounded on the inside of D. But this implies that 1/(f − ζ) has some discontinuities in D, which can only

occur if there exists some z such that f(z) = ζ. This proves surjectivity.

Now to prove the fundamental theorem of algebra as corollary, let f be a polynomial of degree n. Then

|f(z)| ≥ a |z|n − b |z|n−1 for some a, b ∈ R (this follows from f(z) = anz
n + · · · + a0, and the triangle

inequality). But for large |z|, a |z|n − b |z|n−1 clearly gets arbitarily large, and thus |f(z)| → ∞ as |z| → ∞.

We can therefore use the above theorem to prove that there exists a z such that f(z) = 0.
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