
1. Suppose that f(z) =
∑
an(z − c)n and g(z) =

∑
bn(z − c)n both converge in an open disk centered at c,

and assume b0 6= 0. Show that

f(z)

g(z)
=

∞∑
n=0

en(z − c)n, with en =
1

b0

(
an −

n−1∑
k=0

bn−kek

)
,

where the power series converges in a disk Dr(c) with some r > 0, and the empty sum in the definition of

en when n = 0 is understood to be 0. By using this result, compute a first few terms of the Maclaurin series

of sec z = 1
cos z and tan z.

Solution: We will prove this a few steps. First we will show that f/g is a power series in a ball centered on

c, and then we will show that it’s coefficients must be given by the formula state above. To prove that f/g

is a power series, we will prove a few lemmas

Lemma 1: Let ϕ be power series in a ball centered on a, and let σ be power series in a ball centered on

ϕ(a), then σ ◦ ϕ is a power series in a ball centered on a.

Proof. The proof is simple, we let ϕn be the polynomial of degree n such that limn→∞ ϕn = ϕ and similarly

for σm. Then σm ◦ ϕn → σ ◦ ϕn → σ ◦ ϕ as n,m → ∞. This proof is not the most rigorous but it gets the

idea across.

Lemma 2: the function f : C× → C defined by f(z) = 1/z has a power series representation around z = c

for any c 6= 0.

Proof. write 1/z as

1

z
=

1

c− (z − c)
=

1

c

1

1− z−c
c

=

∞∑
n=0

(
1

c

)n
(z − c)n (1)

this equality is valid as long as |(z − c)/c| < 1.

With these two lemmas, we can conclude that h ≡ f/g is analytic on some ball centered on c, that is, there

exists a power series representation for h:

h(z) =

∞∑
n=0

en(z − c)n (2)

We can find the en by equating the coefficients of gh = f . Recall that the coefficients of gh can be calculated

by

gh(z) =
∑
n

 ∑
i+j=n

biej

 (z − c)n (3)

and thus equating the coefficients, we obtain

enb0 +

n−1∑
i=0

bn−iei = an
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which is exactly what we wanted to show.

2. Sketch the following curves. In the following exercises, we will let x, y stand for the real and imaginary parts

of the complex number under consideration. The real number t will denote the curve parameter.

(a) The image of {z ∈ C : Im z = Re z + 1} under the mapping z 7→ z2.

Solution: The original curve is (t, t+ 1), and here z 7→ z2 can be expressed in component form by

(t, t+ 1)→ (−2t− 1, 2t2 + t)

Note that if x = −2t− 1 and y = 2t2 + t, then y = (x2 + x)/2, and so the curve is an upwards facing

parabola that passes through the points z = −1 and z = 0.
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Figure 1: Figure for part (a)

(b) The image of {z ∈ C : Im z = 1} under the mapping z 7→ z3.

Solution: Here we can write the original set as the image of the curve (t, 1), and then z 7→ z3 becomes

(t, 1) 7→ (t3 − 3t, 3t2 − 1) (4)

For very negative t this is in the -/+ quadrant and for very positive t it is in the +/+ quadrant. The

interesting part of the curve is near t = 0, where for t > 0 it is initially heading in the (-1,0) direction,

but changes it’s mind at t = 1 and starts heading in the (+1, 0) direction. The curve is symetric with

respect to the transformation (x, y)→ (−x, y).

(c) The image of the circle ∂Dr = {z ∈ C : |z| = r} under the mapping z 7→ exp z, for r = π and for

r = 3
2π.

Solution: The original curve can be parametrized by r exp (it), and thus the image is exp (r exp (it)) =

(exp (r cos t) cos(r sin t), exp (r cos t) sin(r sin t)), which has a radial length R = exp (r cos t) and an

angle r sin t, that is (logR)2 + θ2 = r2, and thus R = exp
(
±
√
r2 − θ2

)
, where θ ∈ (−r, r). These

curves look like
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Figure 2: Part (b)
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Figure 3: Part (c)

(d) The image of {z ∈ C : Im z = 1} under the multi-valued mapping z 7→ 3
√
z. Identify the part of the

curve that corresponds to the principal branch of z 7→ 3
√
z.

Solution: Here we can write the set as the image of the curve (t, 1), t ∈ R, and thus since 3
√
z =

exp

(
1

3
log z

)
, with log(z) = logR |z|+ ibr arg(z) + i2πn, with

br arg(t, 1) =



arctan
1

t
t > 0

π

2
t = 0

π − arctan

∣∣∣∣1t
∣∣∣∣ t < 0

And so we obtain

3
√

(t, 1) = (1 + t2)1/6 exp

(
i
br arg(1, t)

3
+ i

2πk

3

)
k = 0, 1, 2 (5)

This gives us three branches, which look like the curves shown below in Figure 4.

3



-10 -5 5 10

-10

-5

5

10

Figure 4: Part (d)

(e) The image of {z ∈ C : Im z = 1} under the multi-valued mapping z 7→ log z. Identify the part of the

curve that corresponds to the principal branch z 7→ Logz.

Solution: Here we have (t, 1)→ logR
√

1 + t2+ibr arg(1, t)+i2πn, n ∈ Z, with br arg as defined above.

These branches look like those curves shown below, in figure 5.
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Figure 5: Part (e)

3. Find as many mistakes as you can in the following reasonings.

(a) −1 = i · i =
√
−1 ·

√
−1 =

√
(−1) · (−1) =

√
1 = 1.

Solution: The first equality is okay. The second equality is not okay, because i is only one of the two

values of
√
−1, in other words, if we replace i by

√
−1, we are assuming a specific branch of the square

root function. The third inequality is true in general only as a statement about the square root set

valued function. In the last equality we choose a particular branch of the square root function. The

problem arises because 1 and −1 are both in
√

1.
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(b) We have e2πi = 1, and hence e1+2πi = e. This means that

e = (e1+2πi)1+2πi = e(1+2πi)(1+2πi) = e1−4π
2+4πi = e1−4π

2

,

or e−4π
2

= 1.

Solution: It helps to use the exp notation. First note that (e1+2πi)(1+2πi) = exp((1 + 2πi)(log exp 1 + 2πi)).

Now we see what is wrong, log exp 6= identity, but rather log exp = identity +2πin, n ∈ Z. Thus

exp((1 + 2πi)(log exp 1 + 2πi)) = exp((1 + 2πi)(1 + 2πin)), n ∈ Z = exp(1− 4π2n+ 2πin) = exp(1− 4π2n).

(6)

The problem is we are picking different elements in the set exp(1 + 2πi)1+2πi.

4. Prove the following.

(a) For the principal branch of the power function, we have

zs+it = |z|se−tArgz
(
cos
(
sArgz + t log |z|

)
+ i sin

(
sArgz + t log |z|

))
,

where s and t are real numbers.

Proof. For the principal branch of the power function, we have

zs+it = exp((s+ it)Log(z))

Where here Log(z) = logR |z|+ iArg(z). Substituting this into the above and expanding, we obtain

zs+it = exp(s logR |z| − tArg(z) + i(t logR |z|+ sArg(z)))

And expanding this using the fact that |z|s = exp s logR |z| and exp iθ = cos θ + i sin θ, we obtain

zs+it = |z|s exp (−tArg(z))(cos(t logR |z|+ sArg(z)) + i sin(t logR |z|+ sArg(z))

(b) Let Ω ⊂ C be an open set, and let f ∈ O(Ω) be a holomorphic branch of the n-th root in the sense

that [f(z)]n = z for z ∈ Ω (n ∈ N). Suppose also that log ∈ O(Ω) is a branch of logarithm in the set

Ω. Then we have f(z) = exp( 1
n log z) exp( 2πik

n ) for all z ∈ Ω and for some k ∈ {0, 1, . . . , n− 1}.

Proof. Recall that in class we proved that the n-th root set-valued function satisfies

n
√
z = n

√
|z|︸ ︷︷ ︸
R

exp

(
arg(z)

n

)
, 0 if z = 0 (7)
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We also know that 1
n log z = 1

n logR |z|+ 1
n arg z, and thus

exp

(
1

n
log z

)
= n
√
z (8)

Where the equality holds as set-valued functions. Now since br log is a branch of the logarithm, we

can write log z = br log +2πki, k ∈ Z, and thus we can conclude that

n
√
z = exp

(
1

n
br log z

)
exp

(
2πik

n

)
, k ∈ Z (9)

This is still a multivalued function. By the periodicity of exp, we can suppose that k ∈ Z/nZ. Since

f is a branch of the above n
√

function, we can conclude that

f(z) = exp

(
1

n
br log z

)
exp

(
2πik(z)

n

)
(10)

where k : C→ Z/nZ.

exp

(
2πi

n
k(z)

)
=

f(z)

exp
(
1
nbr log z

) (11)

and since the right side is a continuous function of z, we must conclude that the left side is also a

continuous function, but since k ∈ Z/nZ, if k is discontinuous anywhere, then the function on the left

will also be discontinous, and so we must conclude that k is a constant function on Ω. Finally, we

have

f(z) = exp

(
1

n
br log z

)
exp

(
2πik

n

)
(12)

for some k ∈ Z/nZ, constant.

(c) In the setting of (b), such a function f cannot exist if n ≥ 2 and if 0 ∈ Ω.

Proof. Suppose there did exist such a f . Then clearly since f(0)n = 0, we must have f(0) = 0. Then

note that since

[f(z)]n = z (13)

for all z in some open set Ω, we must have nf(z)n−1f ′(z) = 1, and in particular

f(z)n−1f ′(0) =
1

n
(14)

Since n ≥ 2, we have f(0)n−1 = 0, but this clearly contradicts (14), and so we must conclude that f

is not holomorphic on Ω.

5. Prove the following.

(a) sin z = 0 if and only if z = πn for some n ∈ Z.
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Proof. Recall the definitions of sin and cos

sin(z) =
exp (iz)− exp (−iz)

2i
cos(z) =

exp (iz) + exp (−iz)
2

(15)

Now it is clear that if sin z = 0 then exp (iz) = exp (−iz), and thus exp (i2z) = 1, and thus, as we

proved in class, we must have 2z = 2πn, for some n ∈ Z, and thus z = πn for some n ∈ Z

(b) cos z = 0 if and only if z = π
2 + πn for some n ∈ Z.

Proof. This is proved in almost the same exact way as the previous problem. We use the fact that

exp (iπ) = −1, which is true because exp (iπ) exp (iπ) = 1 while π 6= 2πn for any n ∈ Z. Then

cos z = 0 if and only if exp (iz) = − exp (−iz), that is exp (2iz) = −1, and thus 2z = π + 2πn, n ∈ Z,

and thus z = π/2 + πn, n ∈ Z.

(c) The periods of sin are precisely the numbers 2πn, n ∈ Z.

Proof. We will use the fact (proved in class) that the periods of exp are precisely the numbers 2πn,

n ∈ Z. Now suppose that sin(z + h) = sin(z) for all z, then we can conclude that

exp (iz)(exp (ih)− 1)− exp (−iz)(exp (−ih)− 1) = 0 (16)

Since this is true for all z, we can pick z = 0, whereby we conclude that exp (ih) = exp (−ih), which

implies h = πn. Since exp (πn) = (−1)n, we obtain

exp (iz)((−1)n − 1)− exp (−iz)((−1)n − 1) = 0 (17)

and thus for n odd we conclude that sin(z) = 0 for all z, a contradiction thanks to the last problem.

For n even we have equality. Thus sin(z + h) = sin(z) for all z implies that h cant be anything but

h = 2πn, and this h is a period of sin because exp (z + 2πn) = exp (z) for all z.

(d) The periods of cos are precisely the numbers 2πn, n ∈ Z.

Proof. Using a similar argument to last proof, we conclude that cos(z + h) = cos(z) for all z if and

only if h satisfies

exp (iz)(exp (ih)− 1) + exp (−iz)(exp (−ih)− 1) = 0 (18)

for all z. Using z = w + π/2 (which is a bijective map), we conclude that

i exp (iw)(exp (ih)− 1)− i exp (−iw)(exp (−ih)− 1) = 0 (19)

which is exactly equivalent to sin(w + h) = sin(w), and thus h must be of the form 2πn. Again, if

h = 2πn, then clearly cos(z + h) = cos(z), because cos is a simple sum of exp.

(e) cos z = cosw if and only if either z + w = 2πn for some n ∈ Z, or z − w = 2πn for some n ∈ Z.
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Proof. To prove this, we will prove a useful identity. We recall the addition formula for cos

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

(This is a trivial consequence of the definition of cos in terms of exp), and thus

cos(a+ b)− cos(a− b) = −2 sin(a) sin(b)

where we have used the fact that sin(−b) = − sin(b) and cos(−b) = cos(b) (another trivial consequence

of the definitions). Then, letting u = a+ b and v = a− b, we obtain

cos(u)− cos(v) = −2 sin

(
u+ v

2

)
sin

(
u− v

2

)
Now we can use part (a) to conclude that

cos(u) = cos(v) ⇐⇒ u+ v

2
= nπ or

u− v
2

= nπ

which is exactly what we wanted to show.

(f) A statement analogous to (e) for sin.

Proof. Following the same arguments as part (e), we obtain the identity

sin(a+ b)− sin(a− b) = 2 cos(a) sin(b)

and thus with u = a+ b and v = a− b, we obtain

sin(u)− sin(v) = 2 cos

(
u+ v

2

)
sin

(
u− v

2

)
and thus sin(u) = sin(v) if and only if

u+ v

2
=
π

2
+ πn or

u− v
2

= nπ

and so the analogous statement for sin is

sin(u) = sin(v) ⇐⇒ u+ v = π + 2πn or u− v = 2πn

6. In this exercise, we will construct an inverse function arccos : Ω → C to the cosine, with the domain

Ω = C \ {z ∈ C : Im z = 0, |z| ≥ 1}.

(a) Show that z 7→ eiz maps the strip S = {z ∈ C : 0 < Re z < π} bijectively onto the upper half plane

H = {Im z > 0}.

8



Proof. Let Σ = { z ∈ C : 0 < Im z < π }, then we have that exp : Σ → H bijectively. To see why

this must be so, we note that the imaginary part of z determines it’s angle, and only those angles in

(0, π) get mapped to the upper half plane, and since exp is bijective on R × [0, 2π) to C×, we must

have a bijection between Σ and H. Now we note that i : S → Σ bijectively, for if z = x + iy ∈ S,

then x ∈ (0, π), and thus iz = −y + ix, and so iz ∈ Σ, and vice-versa. Thus exp ◦i takes S to H
bijectively.

(b) Construct a branch f ∈ O(Ω) of z 7→
√
z2 − 1 satisfying f(0) = i. Hint: Construct a branch of

√
z − 1 in C \ [1,∞), and a branch of

√
z + 1 in C \ (−∞,−1], by relying on appropriate branches of

logarithms.

Proof. Let brπ arg be the holomorphic branch of the argument function defined on C −R+, such that

brπ arg(−1) = π. Similarly let br0 arg be the holomorphic branch of the argument function defined

on C − R− such that br0 arg(1) = 0. Then define g by

g(z) =
√
|z − 1| exp

(
brπ arg(1− z)

2

)
0 if z = 1 (20)

Note that g is defined on C − [1,∞), is holomorphic, and satisfies g(z)2 = z − 1, thus g(z) is a

holomorphic branch of
√
z − 1. Similarly, define h by

h(z) =
√
|1 + z| exp

(
br0 arg(1 + z)

2

)
0 if z = −1

Then h is defined on C−(−∞, 1], is holomorphic, and satisfies h(z)2 = z+1, thus h(z) is a holomorphic

branch of
√
z + 1. Finally f = g · h is a holomorphic branch of

√
z2 − 1, defined on Ω.

(c) Show that z 7→ 1
2 (z + z−1) maps H bijectively onto Ω.

Proof. First we will prove injectivity. If z + z−1 = u + u−1, then multiplying both sides by zu, we

obtain (uz − 1)(z − u) = 0. Since z, u are in the upper half plane, we can conclude that uz 6∈ R,

because that would imply that Arg(u) + Arg(z) = 2π, which contradicts the fact that both Arg(u)

and Arg(z) are in (0, π). Thus z − u = 0, and we have injectivity.

It is clear that for any z ∈ H, 1
2 (z+z−1) ∈ Ω, because if |z| = 1, then

∣∣z−1∣∣ = 1 and thus
∣∣z + z−1

∣∣ ≤ 1,

by the triangle inequality. If |z| > 1, then
∣∣z−1∣∣ = λ < 1, and so we can write z = λ exp (iArg(z)) +

(1− λ) exp (iArg(z)), and then z + z−1 = 2Reexp (−Arg(z))λ+ (1− λ) exp (iArg(z)) ∈ H. A similar

argument shows that if |z| < 1, then z+z−1 is in the lower half plane. This proves that (z+z−1)/2 ∈ H
for all z ∈ H.

To prove surjectivity, we wish to solve the equation z + z−1 = 2w, for any w ∈ Ω. This is equivalent

to solving the polynomial equation z2 − 2zw + 1 = (z − w)2 + (w2 − 1). This has roots

z ∈ w +
√
w2 − 1 (21)
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Now if w ∈ H, then one of the two elements in
√
w2 − 1 must also be in H, and thus z ∈ H. Therefore

1
2 (z+ z−1) is surjective onto H, but since −z−1 ∈ H for z ∈ H, and (−z−1) + (−z−1)−1 = −(z+ z−1),

we have 1
2 (z + z−1) surjective onto −H (the lower half plane). Finally, if w ∈ (−1, 1), then

√
w2 − 1

contains ±λi for some nonzero λ, and thus w +
√
w2 − 1 contains an element in H. This proves the

claim

(d) Show that cos maps S bijectively onto Ω, with the inverse arccos : Ω→ S given by

arccos z = −iLog(z +
√
z2 − 1),

where
√
z2 − 1 denotes the branch f constructed in (b).

Proof. Let ϕ(z) = 1
2 (z + z−1), then cos = ϕ ◦ exp ◦ i. Since exp ◦ i : S → H and ϕ : H → Ω are

bijections, (with the principal branch −i ◦ Log : H → S) we can conclude that cos takes S to Ω

bijectively. Now recall that we found that the inverse of ϕ is implicitly defined by the equation

z ∈ ϕ(z) +
√
ϕ(z)2 − 1

And so using the branch f for
√
z2 − 1 we constructed earlier, we can argue that ϕ−1 = z + f(z).

Then since cos = ϕ ◦ exp ◦ i, we have arccos = −i ◦ Log ◦ ϕ−1, or

arccos(z) = −iLog(z +
√
z2 − 1)

Which is what we want to show.
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