1. Suppose that f(z) = Y an(z — )™ and g(z) = > by(z — ¢)™ both converge in an open disk centered at c,
and assume by # 0. Show that

[e%} 1 n—1
Z:: (z—0o)" with e, = % (an — ,;J bn_kek> ,
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where the power series converges in a disk D,.(c¢) with some r > 0, and the empty sum in the definition of

en when n = 0 is understood to be 0. By using this result, compute a first few terms of the Maclaurin series

1
cos z

of secz = and tan z.

Solution: We will prove this a few steps. First we will show that f/g is a power series in a ball centered on
¢, and then we will show that it’s coeflicients must be given by the formula state above. To prove that f/g

is a power series, we will prove a few lemmas

LEMMA 1: Let ¢ be power series in a ball centered on a, and let ¢ be power series in a ball centered on

©(a), then o o ¢ is a power series in a ball centered on a.

Proof. The proof is simple, we let ¢,, be the polynomial of degree n such that lim,,_, ¢, = ¢ and similarly
for o,. Then o, 0 p,, = 0o @, = gop as n,m — oo. This proof is not the most rigorous but it gets the

idea across. O

LEMMA 2: the function f : C* — C defined by f(z) = 1/z has a power series representation around z = ¢

for any ¢ # 0.

Proof. write 1/z as

%ZC—(i—C):cl— _Z<> (5= W

c

this equality is valid as long as |(z — ¢)/¢| < 1. O
With these two lemmas, we can conclude that h = f/g is analytic on some ball centered on ¢, that is, there
exists a power series representation for h:

o0

h(z)=> enlz—c)" (2)

n=0

We can find the e, by equating the coefficients of gh = f. Recall that the coefficients of gh can be calculated
by

gh(z)=>_ | D biej | (z—o)" (3)

n i+j=n
and thus equating the coefficients, we obtain
n—1
enbo + Z bp—ie; = an
i=0




which is exactly what we wanted to show.

2. Sketch the following curves. In the following exercises, we will let x,y stand for the real and imaginary parts

of the complex number under consideration. The real number t will denote the curve parameter.

(a) The image of {z € C:Imz = Rez + 1} under the mapping z — 2%

~

Solution: The original curve is (¢,t + 1), and here z — 22 can be expressed in component form by
(t,t4+1) — (=2t —1,2t> + 1)

Note that if = —2¢ — 1 and y = 2t% + ¢, then y = (2? 4+ )/2, and so the curve is an upwards facing
parabola that passes through the points z = —1 and z = 0.

Figure 1: Figure for part (a)

The image of {z € C:Imz = 1} under the mapping z ~ z°.

Solution: Here we can write the original set as the image of the curve (¢, 1), and then z — 23 becomes
(t,1) — (t3 —3t,3t> — 1) (4)

For very negative ¢ this is in the -/+ quadrant and for very positive ¢ it is in the +/+ quadrant. The
interesting part of the curve is near t = 0, where for ¢ > 0 it is initially heading in the (-1,0) direction,
but changes it’s mind at ¢ = 1 and starts heading in the (4+1,0) direction. The curve is symetric with

respect to the transformation (z,y) — (—z,y).

The image of the circle D, = {z € C : |z| = r} under the mapping z — expz, for r = 7 and for

=3
r= 3.

Solution: The original curve can be parametrized by r exp (it), and thus the image is exp (r exp (it)) =
(exp (r cost) cos(rsint),exp (rcost)sin(rsint)), which has a radial length R = exp (rcost) and an
angle rsint, that is (log R)? + 0% = r2, and thus R = exp (i\/r2 — 92), where 6 € (—r,r). These

curves look like



Figure 2: Part (b)

Figure 3: Part (c)

(d) The image of {z € C : Imz = 1} under the multi-valued mapping z — ¢/z. Identify the part of the

curve that corresponds to the principal branch of z — /2.

Solution: Here we can write the set as the image of the curve (¢,1), ¢ € R, and thus since &z =

1
exp (3 log z>, with log(z) = logg |z| 4+ ibrarg(z) + i2mn, with

1
arctan n t>0
T
brarg(t,1) = 35 t=0
1
7 — arctan t’ t<0

And so we obtain
b 1.t 2k
Y1) = 1+ O exp (z“’“g() + z;f) k=0,1,2

This gives us three branches, which look like the curves shown below in Figure 4.



Figure 4: Part (d)
(e) The image of {z € C: Imz = 1} under the multi-valued mapping z — log z. Identify the part of the
curve that corresponds to the principal branch z +— Logz.

Solution: Here we have (t,1) — logg V1 + t2+ibrarg(1,t)+i2mn, n € Z, with br arg as defined above.

These branches look like those curves shown below, in figure 5.

Figure 5: Part (e)

3. Find as many mistakes as you can in the following reasonings.
(a) —l=i-i=+—1-v/=1=+/(-1)-(-1)=V1=1.

Solution: The first equality is okay. The second equality is not okay, because i is only one of the two
values of v/—1, in other words, if we replace i by v/—1, we are assuming a specific branch of the square
root function. The third inequality is true in general only as a statement about the square root set
valued function. In the last equality we choose a particular branch of the square root function. The

problem arises because 1 and —1 are both in /1.



(b)

We have 2™ = 1, and hence e! 2™ = e. This means that

1427i) (142mi) _ el—47r2+47ri _ 61—4712

e = (el+2miylHmi ol

)

B

Solution: Tt helps to use the exp notation. First note that (e!*27%)(1+27) — exp((1 + 27i)(log exp 1 + 27i)).

Now we see what is wrong, log exp # identity, but rather log exp = identity 4+2min, n € Z. Thus

exp((1 + 2mi)(logexp 1 + 2mi)) = exp((1 + 2mi)(1 + 27in)), n € Z = exp(1 — 47*n + 27min) = exp(1 — 47%n).

The problem is we are picking different elements in the set exp(1 + 274)

(6)

14272

4. Prove the following.

(a)

For the principal branch of the power function, we have
Z5HI — || tATES (cos (sArgz + tlog |z|) + isin (sArgz + tlog|z])) ,

where s and t are real numbers.

Proof. For the principal branch of the power function, we have
25% — exp((s + it)Log(2))
Where here Log(z) = logg |z| + iArg(z). Substituting this into the above and expanding, we obtain
25% = exp(slogy | 2| — tArg(z) + i(tlogg | 2| + sArg(2)))
And expanding this using the fact that |z|° = exp slogg |2| and expif = cos@ + isin 6§, we obtain
25 = |2|% exp (—tArg(2))(cos(t logg |2| + sArg(2)) + isin(t logg |2| + sArg(2))

O

Let © C C be an open set, and let f € &(Q) be a holomorphic branch of the n-th root in the sense
that [f(z)]" = z for z € Q (n € N). Suppose also that log € () is a branch of logarithm in the set
Q. Then we have f(2) = exp( log 2) exp(2Z£) for all z €  and for some k € {0,1,...,n — 1}.

Proof. Recall that in class we proved that the n-th root set-valued function satisfies

{ﬁz"z|exp<ari(z)), 0if =0 (7)
R



We also know that %logz = %logR |z| + %arg z, and thus

1
exp (n log z) = /2 (8)

Where the equality holds as set-valued functions. Now since brlog is a branch of the logarithm, we

can write log z = brlog +2nki, k € Z, and thus we can conclude that
1 2mik
Yz = exp (brlog z) exp (m) , kel (9)
n n

This is still a multivalued function. By the periodicity of exp, we can suppose that k € Z/nZ. Since

[ is a branch of the above g/ function, we can conclude that

£(2) = exp (ibr log z) exp (27”’“(2)) (10)

n

where k : C — Z/nZ.

271 B f(2)

and since the right side is a continuous function of z, we must conclude that the left side is also a
continuous function, but since k € Z/nZ, if k is discontinuous anywhere, then the function on the left

will also be discontinous, and so we must conclude that k is a constant function on €. Finally, we

£(2) = exp (ibr log z) exp (27;”“ ) (12)

for some k € Z/nZ, constant. O

have

(¢) In the setting of (b), such a function f cannot exist if n > 2 and if 0 € Q.

Proof. Suppose there did exist such a f. Then clearly since f(0)™ = 0, we must have f(0) = 0. Then

note that since
[fR]" =2 (13)
for all z in some open set 2, we must have nf(z)"~!f’(z) = 1, and in particular

Fr ) =L (14)

n

Since n > 2, we have f(0)"~! = 0, but this clearly contradicts (14), and so we must conclude that f

is mot holomorphic on (2. O
5. Prove the following.

(a) sinz =0 if and only if z = 7n for some n € Z.



(e)

Proof. Recall the definitions of sin and cos

exp (iz) + exp (—iz)
2

exp (iz) — exp (—iz)
2

cos(z) = (15)

sin(z) =
Now it is clear that if sinz = 0 then exp (iz) = exp (—iz), and thus exp (i2z) = 1, and thus, as we
proved in class, we must have 2z = 27n, for some n € Z, and thus z = 7n for some n € Z O
cosz = 0 if and only if 2 = § + 7n for some n € Z.

Proof. This is proved in almost the same exact way as the previous problem. We use the fact that
exp (im) = —1, which is true because exp (im)exp (im) = 1 while 7 # 27n for any n € Z. Then
cosz = 0 if and only if exp (iz) = — exp (—iz), that is exp (2iz) = —1, and thus 2z = 7 + 27n, n € Z,
and thus z =7/2+7n, n € Z. O

The periods of sin are precisely the numbers 27n, n € Z.

Proof. We will use the fact (proved in class) that the periods of exp are precisely the numbers 27n,

n € Z. Now suppose that sin(z 4+ h) = sin(z) for all z, then we can conclude that
exp (iz)(exp (ih) — 1) — exp (—iz)(exp (—ih) — 1) =0 (16)

Since this is true for all z, we can pick z = 0, whereby we conclude that exp (ih) = exp (—ih), which

implies h = 7n. Since exp (7n) = (—1)", we obtain
exp (iz)((—=1)" — 1) — exp (—iz)((=1)" = 1) =0 (17)

and thus for n odd we conclude that sin(z) = 0 for all z, a contradiction thanks to the last problem.
For n even we have equality. Thus sin(z + h) = sin(z) for all z implies that h cant be anything but

h = 27n, and this h is a period of sin because exp (z 4+ 2mn) = exp (z) for all z. O
The periods of cos are precisely the numbers 27n, n € Z.

Proof. Using a similar argument to last proof, we conclude that cos(z + h) = cos(z) for all z if and
only if h satisfies
exp (iz)(exp (ih) — 1) 4+ exp (—iz)(exp (—ih) — 1) =0 (18)

for all z. Using z = w + 7/2 (which is a bijective map), we conclude that
iexp (iw)(exp (th) — 1) —iexp (—iw)(exp (—ih) — 1) =0 (19)

which is exactly equivalent to sin(w + h) = sin(w), and thus h must be of the form 27n. Again, if

h = 27n, then clearly cos(z + h) = cos(z), because cos is a simple sum of exp. O

cos z = cosw if and only if either z + w = 27n for some n € Z, or z — w = 27n for some n € Z.



Proof. To prove this, we will prove a useful identity. We recall the addition formula for cos
cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

(This is a trivial consequence of the definition of cos in terms of exp), and thus
cos(a + b) — cos(a — b) = —2sin(a) sin(b)

where we have used the fact that sin(—b) = — sin(b) and cos(—b) = cos(b) (another trivial consequence

of the definitions). Then, letting u = a + b and v = a — b, we obtain

cos(u) — cos(v) = —2sin (“;L”) sin (“ ; v)

Now we can use part (a) to conclude that

U+ v U—v
= nm or

cos(u) = cos(v) <= 5 5

=nm

which is exactly what we wanted to show. O
(f) A statement analogous to (e) for sin.

Proof. Following the same arguments as part (e), we obtain the identity
sin(a 4+ b) — sin(a — b) = 2 cos(a) sin(b)
and thus with u = a4+ b and v = a — b, we obtain

sin(u) — sin(v) = 2 cos <”;”> sin <u ; v)

and thus sin(u) = sin(v) if and only if

u+v ™ n u—v
= — +7n or =nmw
2 2
and so the analogous statement for sin is
sin(u) = sin(v) <= u+v =7+ 2mn or u—v=2mn

O

6. In this exercise, we will construct an inverse function arccos : £ — C to the cosine, with the domain
N=C\{z€eC:Imz=0, |z| > 1}.

(a) Show that z + e** maps the strip S = {z € C: 0 < Rez < 7} bijectively onto the upper half plane
H = {Im z > 0}.



Proof. Let ¥ = {z€ C:0<Imz <}, then we have that exp : ¥ — H bijectively. To see why
this must be so, we note that the imaginary part of z determines it’s angle, and only those angles in
(0,7) get mapped to the upper half plane, and since exp is bijective on R x [0, 27) to C*, we must
have a bijection between ¥ and H. Now we note that i : S — ¥ bijectively, for if z = = + iy € 5,
then z € (0,7), and thus iz = —y + iz, and so iz € 3, and vice-versa. Thus exp oi takes S to H

bijectively. O

Construct a branch f € 0(Q) of z — /22 — 1 satisfying f(0) = i. Hint: Construct a branch of
Vz—11in C\ [1,00), and a branch of v/z+ 1 in C\ (—o0, —1], by relying on appropriate branches of

logarithms.

Proof. Let br, arg be the holomorphic branch of the argument function defined on C'—R™, such that
br, arg(—1) = . Similarly let brgarg be the holomorphic branch of the argument function defined
on C — R~ such that brgarg(l) = 0. Then define g by

9(z) = |z — 1] exp (br”arg;l_z)) 0ifz=1 (20)

Note that g is defined on C — [1,00), is holomorphic, and satisfies g(2)? = z — 1, thus g(z) is a
holomorphic branch of v/z — 1. Similarly, define h by

h(z) = /|1 + 2| exp (broarg(l—i—z)) Oif z=-1

2

Then h is defined on C—(—o0, 1], is holomorphic, and satisfies h(z)? = z+1, thus h(z) is a holomorphic
branch of v/z + 1. Finally f = ¢ - h is a holomorphic branch of v/22 — 1, defined on Q. O

Show that z + 1(z 4+ 271) maps H bijectively onto Q.

Proof. First we will prove injectivity. If z + 27! = w4+ u~!, then multiplying both sides by zu, we
obtain (uz — 1)(z — u) = 0. Since z,u are in the upper half plane, we can conclude that uz ¢ R,
because that would imply that Arg(u) + Arg(z) = 27, which contradicts the fact that both Arg(u)

and Arg(z) are in (0, 7). Thus z — u = 0, and we have injectivity.

It is clear that for any z € H, (z+27") € 0, because if |2| = 1, then |z_1’ = 1 and thus |z + z_l} <1,
by the triangle inequality. If |z| > 1, then ‘z_ll = A < 1, and so we can write z = Aexp (iArg(z)) +
(1 — X)exp (iArg(z)), and then z + 27! = 2Reexp (—Arg(2))A + (1 — \) exp (iArg(z)) € H. A similar
argument shows that if |z| < 1, then z+2~" is in the lower half plane. This proves that (z+271)/2 € H
for all z € H.

To prove surjectivity, we wish to solve the equation z + 2~ = 2w, for any w € Q. This is equivalent

to solving the polynomial equation 22 — 2zw + 1 = (z — w)? + (w? — 1). This has roots

zew+ Vw2 -1 (21)



Now if w € H, then one of the two elements in v/w? — 1 must also be in H, and thus z € H. Therefore
3(z4271) is surjective onto H, but since —z~! € H for z € H, and (—z7!) + (—271) 7! = —(z+271),
we have 1(z + z71) surjective onto —H (the lower half plane). Finally, if w € (—1,1), then vw? — 1
contains +Ai for some nonzero A, and thus w + Vw2 — 1 contains an element in H. This proves the

claim O

Show that cos maps S bijectively onto €, with the inverse arccos : 2 — S given by

arccos z = —i Log(z + V22 — 1),

where /22 — 1 denotes the branch f constructed in (b).

Proof. Let ¢(z) = (2 4+ 27 '), then cos = @ o expoi. Since expoi: S — Hand ¢ : H — Q are
bijections, (with the principal branch —i o Log : H — S) we can conclude that cos takes S to 2
bijectively. Now recall that we found that the inverse of ¢ is implicitly defined by the equation

z € p(2) + Vep(2)2 =1

And so using the branch f for v/22 — 1 we constructed earlier, we can argue that p=! = z + f(2).

Then since cos = ¢ o exp o i, we have arccos = —i o Log o ¢!, or

arccos(z) = —iLog(z + v 22 — 1)

Which is what we want to show. O
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