
PARAMETRIZATIONS AND LOCI

TSOGTGEREL GANTUMUR

Abstract. We consider curvilinear coordinate systems, parametrizations of curves and sur-
faces, and descriptions of curves and surfaces as loci.
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1. Coordinate systems

Thinking of polar coordinates as an example, a coordinate system in Rn is nothing but a
map from one region of Rn into another region of Rn. More precisely, it is a map Φ : D → R
from D ⊂ Rn into R ⊂ Rn, where D is called the domain of Φ, and R is called the codomain
or the range of Φ. Recall that a map Φ : D → R assigns an element Q = Φ(P ) of R to every
element P of D. The words function, map, transformation, transform, and coordinate change
are all interchangeable in this context.

• Φ(P ) is called the image of P under Φ, or the value of Φ at P .
• The image of a subset S ⊂ D under Φ is defined to be

Φ(S) = {Φ(P ) : P ∈ S}. (1)

that is, the collection of all the images Φ(P ) for P ∈ S.
• The image Φ(D) of the entire domain D is called the image of Φ.
• If Φ(D) = R, then we say that the map Φ is onto, or surjective.
• Given Q ∈ Φ(D), the set {P ∈ D : Φ(P ) = Q} ⊂ D is called the preimage of Q under

Φ, and denoted by Φ−1(Q).
• If Φ(P ) = Φ(P ′) implies P = P ′ for all P, P ′ ∈ D, that is, if Φ−1(Q) consists of a

single element for all Q ∈ Φ(D), then we say that Φ is one-to-one, or injective.
• A map that is both injective and surjective is said to be bijective.
• If Φ : D → R is bijective, then for any Q ∈ R, there exists a unique P ∈ D such that

Φ(P ) = Q, and we define the inverse function Φ−1 : R→ D by Φ−1(Q) = P .

Note that by replacing the range R by a smaller set, one can always ensure surjectivity.
Similarly, on can make any map injective by shrinking the domain D.
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Example 1.1. (a) Given any set A, the identity map id : A→ A is defined by id(a) = a for
all a ∈ A. Obviously, the identity map is bijective, and it is its own inverse.

(b) Let N = {1, 2, 3, . . .} be the set of natural numbers, and let f : N → N be a function
defined by f(n) = 2n for n ∈ N. Then the image of f is the set of all positive even
integers f(N) = {2n : n ∈ N}. It is injective, but not surjective, as the image misses the
odd integers.

(c) Consider the function f(t) = t2. With the domain D = [0, 2], the function is injective, and
its image is f(D) = [0, 4]. On the other hand, the function with the domain D = [−1, 2]
has the same image f(D) = [0, 4], and becomes non-injective, as, e.g., f(−1) = f(1).

(d) The polar coordinate change Φ(r, θ) = (r cos θ, r sin θ), considered as a map

Φ : [0,∞)× (−π, π]→ R2,

is surjective, but not injective, because Φ(0, θ) = (0, 0) no matter what θ is. However,
shrinking the domain to

Φ : (0,∞)× (−π, π]→ R2,

ensures injectivity, but loses surjectivity, because the origin is no longer in the image.

Remark 1.2 (Coordinate change). Let U ⊂ Rn be an open set, and let Φ : U → Ω be a
continuously differentiable and invertible map, whose inverse Φ−1 : Ω→ U is also continuously
differentiable. By default, the points in Ω will be denoted by x = (x1, . . . , xn), and the points
in U will be denoted by y = (y1, . . . , yn). We can and should think of y as a new coordinate
system in Ω, with y = Φ−1(x) being the y-coordinates of the point x ∈ Ω. It will often be
convenient to write y = y(x) and x = x(y) instead of y = Φ−1(x) and x = Φ(y), respectively.
Thus a curve y = y(t) in U corresponds to the curve x = x(y(t)) in Ω, and

x′(t) = DΦ(y(t))y′(t), (2)

which tells us how the components of a vector should transform under change of coordinates:

α = DΦ(y)β, i.e., αi =
n∑
k=1

∂xi
∂yk

(y)βk, (i = 1, . . . , n), (3)

where y ∈ U , x = x(y), α ∈ Rn is a vector based at x, and β ∈ Rn is a vector based at y. In
fact, we may think of the columns of DΦ(y) as a basis for vectors based at x, and β1, . . . , βn
as the coordinates of α with respect to this basis. Such a construction, consisting of n vector
fields, that form a basis for vectors at each point, is called a frame. On the other hand, from
the point of view of the domain U , we would have

β = DΦ−1(x)α, i.e., βk =

n∑
i=1

∂yk
∂xi

(y)αi, (k = 1, . . . , n), (4)

which means that α1 . . . , αn are the coordinates of β when the columns of DΦ−1(x) are used
as a basis.

Example 1.3 (Polar coordinates). Consider the map Φ : Ω→ U , defined by

Φ(r, φ) =

(
x(r, θ)
y(r, θ)

)
=

(
r cos θ
r sin θ

)
, (5)

where Ω = (0,∞) × (−π, π) and U = R2 \ {(x, 0) : x ≤ 0}. If Φ(r, φ) = (x, y) ∈ U , then

x2 + y2 = r2, or r =
√
x2 + y2 > 0. This yields cos θ = x

r ∈ [−1, 1], and hence with the
function arccos t ∈ [0, π], we have arccos xr = φ or arccos xr = −φ, depending on the sign of θ.
In other words, knowing x and r determines θ up to a sign. The sign of φ can be determined
with the help of the conditions sin θ = y

r and −π < θ < π, because these imply that the sign
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of θ is the same as the sign of y. To conclude, (x, y) ∈ U determines (r, θ) ∈ Ω uniquely, i.e.,
the map Φ is invertible. We can compute

DΦ(r, θ) =

(
∂rx ∂θx
∂ry ∂θy

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
, (6)

and

detDΦ(r, θ) = r, (7)

which is nonsingular everywhere in Ω. In view of the preceding remark, any vector α ∈ R2

based at q = Φ(p) ∈ U can be written as

α = DΦ(q)β, (8)

with β ∈ R2. If we write β = (βr, βθ) in components, then we have

α = βrêr + βθêθ, (9)

where

êr = ∂rΦ(q), and êθ = ∂θΦ(q), (10)

are the columns of DΦ(q), forming a frame in U . Note that this frame is an orthogonal frame,
in the sense that êr ⊥ êθ at each point in U . A coordinate system whose associated frame is
orthogonal is called an orthogonal coordinate system.

Example 1.4 (Elliptic coordinates). Consider the map (x, y) = Φ(ρ, φ) defining the elliptic
coordinates given by {

x = coshρ cos θ,

y = sinhρ sin θ.
(11)

For ρ = 0, this becomes {
x = cos θ,

y = 0,
(12)

and hence Φ covers the line segment −1 ≤ x ≤ 1 on the x-axis, twice per period of cosine.
For various special values of θ, we have

θ = 0 :

{
x = coshρ,

y = 0,
θ =

π

2
:

{
x = 0,

y = sinhρ,

θ = π :

{
x = − coshρ,

y = 0,
θ =

3π

2
:

{
x = 0,

y = − sinhρ.

Thus for θ = 0, the map covers the ray x ≥ 1 on the x-axis twice, and for θ = π, it covers the
ray x ≤ −1 on the x-axis twice. Similarly, for θ = π

2 and for θ = 3π
2 , it covers respectively the

rays y ≥ 0 and y ≤ 0 on the y-axis twice. In general, finding cos θ and sin θ from (62), and
invoking the fundamental identity cos2θ + sin2θ = 1, we get

x2

cosh2ρ
+

y2

sinh2ρ
= 1. (13)

Therefore, the curves of constant ρ are ellipses with the semimajor axis a = coshρ and the
semiminor axis b = sinhρ. The focal points of this ellipse are at x = ±1 and y = 0. Now
finding coshρ and sinhρ from (62), and invoking the identity cosh2ρ− sinh2ρ = 1, we get

x2

cos2θ
− y2

sin2θ
= 1. (14)
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This means that the curves of constant θ are hyperbolae with foci at x = ±1 on the x-axis.
Similarly to polar coordinates, the domain of elliptic coordinates is usually taken to be ρ > 0
and −π < θ < π. The Jacobian matrix of Φ is

DΦ(ρ, θ) =

(
sinhρ cos θ − coshρ sin θ
coshρ sin θ sinhρ cos θ

)
, (15)

and its determinant is

detDΦ(ρ, θ) = sinh2ρ cos2 θ + sinh2ρ cos2 θ = sinh2ρ+ sin2 θ. (16)

Note that as the columns of (15) are orthogonal to each other, the elliptic coordinate system
is an orthogonal coordinate system.

Example 1.5 (Parabolic coordinates). Consider the map (x, y) = Φ(u, v) defining the para-
bolic coordinates given by {

x = uv,

y = 1
2(v2 − u2).

(17)

When u = 0 and v = 0, this becomes

u = 0 :

{
x = 0,

y = 1
2v

2,
v = 0 :

{
x = 0,

y = −1
2u

2,

Thus for u = 0 and for v = 0, the map Φ covers respectively the rays y ≥ 0 and y ≤ 0 on the
y-axis twice. In general, removing u and subsequently v from (17), we get

2y =
x2

v2
− v2, 2y = u2 − x2

u2
. (18)

Therefore, the curves of constant v are “right-side-up” parabolas with their vertices below the
origin, while the curves of constant u are “upside-down” parabolas with their vertices above
the origin. The domain of parabolic coordinates is usually taken to be −∞ < u < ∞ and
v > 0. The Jacobian matrix of Φ is

DΦ(u, v) =

(
v u
−u v

)
, (19)

and its determinant is
detDΦ(u, v) = u2 + v2. (20)

Since the columns of (19) are orthogonal to each other, the parabolic coordinate system is an
orthogonal coordinate system.

Example 1.6 (Cylindrical coordinates). Consider the map (x, y, z) = Φ(r, θ, z) defining the
cylindrical coordinates in 3 dimensions, given by

x = r cos θ,

y = r sin θ,

z = z.

(21)

The Jacobian matrix of Φ is

DΦ(r, θ, z) =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 , (22)

and its determinant is
detDΦ(u, v) = r. (23)

As the columns of (22) are orthogonal to each other, the cylindrical coordinate system is an
orthogonal coordinate system.
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Exercise 1.7 (Generalized cylindrical coordinates). One can define a generalized cylindrical
coordinate system based on any given coordinate system in the xy-plane. For instance, the
elliptic cylindrical coordinate system is given by

x = coshρ cos θ,

y = coshρ cos θ,

z = z,

(24)

and the parabolic cylindrical coordinate system is given by
x = uv,

y = 1
2(v2 − u2),

z = z.

(25)

Compute the Jacobian matrix and its determinant for each of these coordinate transforma-
tions. Are these orthogonal coordinate systems? Depict the coordinate surfaces (i.e., the
surfaces with constant ρ, etc.).

Example 1.8 (Spherical coordinates). Consider the map (x, y, z) = Φ(r, θ, φ) defining the
spherical coordinates in 3 dimensions, given by

x = r cos θ cosφ,

y = r cos θ sinφ,

z = r sin θ.

(26)

The Jacobian matrix of Φ is

DΦ(r, θ, z) =

cos θ cosφ −r sin θ cosφ −r cos θ sinφ
cos θ sinφ −r sin θ sinφ r cos θ cosφ

sin θ r cos θ 0

 , (27)

and its determinant is

detDΦ(r, θ, φ) = −r2 cos θ. (28)

Since the columns of (27) are orthogonal to each other, the spherical coordinate system is an
orthogonal coordinate system. Note that another convention often used in practice is that one
employs ϑ = π

2 − θ instead of θ, and arranges the coordinates as (r, φ, ϑ) instead of (r, θ, φ).
In this case, the transformation is 

x = r cosφ sinϑ,

y = r sinφ sinϑ,

z = r cosϑ,

(29)

and the determinant of its Jacobian is

detDΦ(r, φ, ϑ) = r2 sinϑ. (30)

Exercise 1.9 (Ellipsoidal and paraboloidal coordinates). Similarly to spherical coordinates,
the ellipsoidal coordinates (ρ, θ, φ) in 3 dimensions is given by

x = coshρ cos θ cosφ,

y = coshρ cos θ sinφ,

z = sinhρ sin θ,

(31)
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and the paraboloidal coordinates (u, v, φ) in 3 dimensions is given by
x = uv cosφ,

y = uv sinφ,

z = 1
2(v2 − u2).

(32)

Depict the coordinate surfaces (i.e., the surfaces with constant u, etc.). What would be conve-
nient ranges of values for the coordinates? Compute the Jacobian matrix and its determinant
for each of these coordinate transformations. Are these orthogonal coordinate systems?

2. Smooth curves

Intuitively, a differentiable curves is a curve with the property that the tangent line at each
of its points can be defined. To motivate our definition, let us look at some examples.

Example 2.1. (a) Consider the function γ : (0, π)→ R2 defined by

γ(t) =

(
cos t
sin t

)
. (33)

As t varies in the interval (0, π), the point γ(t) traces out the curve

C = [γ] ≡ {γ(t) : t ∈ (0, π)} ⊂ R2, (34)

which is a semicircle (without its endpoints). We call γ a parametrization of C. If γ(t)
represents the coordinates of a particle in the plane at time t, then the “instantaneous
velocity vector” of the particle at the time moment t is given by

γ′(t) =

(
− sin t
cos t

)
. (35)

Obviously, γ′(t) 6= 0 for all t ∈ (0, π), and γ is smooth (i.e., infinitely often differentiable).
The direction of the velocity vector γ′(t) defines the direction of the line tangent to C at
the point p = γ(t).

(b) Under the substitution t = s2, we obtain a different parametrization of C, given by

η(s) ≡ γ(s2) =

(
cos s2

sin s2

)
. (36)

Note that the parameter s must take values in (0,
√
π).

(c) Now consider the function ξ : [0, π]→ R2 defined by

ξ(t) =

(
cos t
sin t

)
. (37)

The only difference between the curve C̄ = [ξ] and the curve C = [γ] from (a) is that C̄
contains its endpoints, while C does not. In order to make sense of the velocity vector of
ξ at the endpoints of the interval [0, π], we may think of ξ as the restriction of another

function ξ̃ : (−ε, π + ε)→ R2 to the interval [0, π], where ε > 0 is a small number, and

ξ̃(t) =

(
cos t
sin t

)
, t ∈ (−ε, π + ε). (38)

We call ξ̃ an extension of ξ. With such an extension at hand, the velocity vector of ξ at
the endpoints of the interval [0, π] can be defined as ξ′(0) = ξ̃′(0) and ξ′(π) = ξ̃′(π).
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Exercise 2.2. Let δ : R→ R2 be given by

δ(t) =

(
(1− θ(t))t3
θ(t)t3

)
, where θ(t) =

{
1 for t > 0,

0 for t ≤ 0.
(39)

Show that δ is continuously differentiable in R. Sketch the curve defined by δ. Why there is
a “corner” at the origin?

The preceding discussions motivate us to state the following points.

• A curve is a set that admits a parametrization γ.
• In order to have a tangent line at every point of the curve, we require that γ is

differentiable and γ′ 6= 0 everywhere.
• By introducing an extension if necessary, we can always assume that γ is defined on

some open interval (a, b).

In addition, we require that the tangent lines vary continuously as we traverse along the
curve, i.e., we want velocity vector γ′(t) to depend continuously on t. This gets rid of the
pathological curves such as the graph of the function f : R → R defined by f(x) = x2 sin 1

x
for x 6= 0 and f(0) = 0.

Definition 2.3. A set L ⊂ Rn is called an open curve if there exists a continuously differen-
tiable function γ : (a, b) → Rn with −∞ ≤ a < b ≤ ∞, such that L = {γ(t) : t ∈ (a, b)} and
γ′(t) 6= 0 for all t ∈ (a, b). In this setting, γ is called a parametrization of L.

Remark 2.4. Strictly speaking, the preceding definition is that of differentiable open curves.
However, all curves in these notes will be assumed to be differentiable, and we will simply
omit the adjective “differentiable.”

Example 2.5. (a) Consider the function γ : R→ R2 defined by

γ(t) =

(
t2 − 1
t(t2 − 1)

)
. (40)

We have

γ′(t) =

(
2t

3t2 − 1

)
6=
(

0
0

)
for t ∈ R, (41)

and thus γ defines an open curve in R2. However, we have γ(−1) = γ(1), indicating
that the curve intersects with itself. At the self-intersection point, we have two possible
tangent directions γ′(1) = (2, 2) and γ′(−1) = (−2, 2). This is not a particularly serious
problem, but it is useful to introduce a concept that rules out self-intersecting curves.
An idea would be to require injectivity of the parametrization, that is, to require that
γ(s) = γ(t) implies s = t.

(b) Consider the unit circle. We may try to parametrize it by

ξ(t) =

(
cos t
sin t

)
, t ∈ (−ε, 2π), (42)

but this is not injective, as ξ(t) = ξ(t + 2π) for t ∈ (−ε, 0). This cannot be avoided if
we want a parametrization with an open interval as its domain. A way out would be to
“cover” the circle by using multiple parametrizations, meaning that we consider the circle
as multiple arcs glued together “nicely.”

We will use the notation

Qr(y) = (y1 − r, y1 + r)× . . .× (yn − r, yn + r), (43)

for the n-dimensional cube centred at y ∈ Rn, with the side length 2r. This is called an open
cube, as opposed the the closed cube Q̄r(y). Note that we always have Qr(y) ⊂ Q̄r(y).
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Definition 2.6. A set L ⊂ Rn is called an (embedded) curve if for each p ∈ L, there exists
δ > 0 such that L ∩ Qδ(p) is an open curve admitting an injective parametrization. Recall
that a function γ is called injective if γ(s) = γ(t) implies s = t.

Example 2.7. Let us show that the unit circle C = {(x, y) ∈ R2 : x2+y2 = 1} is a curve in the
sense of the preceding definition. Pick an arbitrary p = (x∗, y∗) ∈ C. We consider a few cases.
First, assume y∗ > 0. In this case, we choose δ > 0 so small that Qδ(p) ⊂ {(x, y) : −1 < x <

1, y > 0}, and use the parametrization γ : (x∗−δ, x∗+δ)→ R2 defined by γ(t) = (t,
√

1− t2).
We can check that this is an injective parametrization of Qδ(p) ∩ C. The second case, where

we assume y∗ < 0, can be treated similarly, by using the parametrization γ(t) = (t,−
√

1− t2).
The remaining case is y = 0, which can be separated into two subcases: x∗ = 1 and x∗ = −1.
For x∗ = 1, we use γ(t) = (

√
1− t2, t) for t ∈ (−1, 1), which parametrizes Q1(p)∩C injectively.

Similarly, for x∗ = −1, we can use the parametrization γ(t) = (−
√

1− t2, t).

Definition 2.8. Given a parametrization γ : (a, b) → Rn of a curve, the velocity vector of γ
at the point p = γ(t) is γ′(t) ∈ Rn.

Remark 2.9. Let γ : (a, b)→ Rn be a parametrization of a curve L, and let γ̄(s) = γ(φ(s))
be another parametrization of L, where φ : (ā, b̄) → (a, b) is continuously differentiable.
One can think of φ as a reparametrization or a coordinate change on the curve. Under this
reparametrization, the velocity vector at p = γ̄(s) transforms as

γ̄′(s) = γ′(φ(s))φ′(s). (44)

Since φ′(s) ∈ R, we see that even though the velocity vector may change during reparametriza-
tion, its direction stays the same. This direction defines the tangent line of L at p, which is
an intrinsic property of the curve L independent of parametrization.

3. Hypersurfaces

In this section, we will extend the concept of curves to surfaces, and their higher dimensional
generalization, hypersurfaces. We will only be concerned with smooth (or differentiable)
surfaces, but in practice, non-smooth objects such as the surface of a cube do not cause much
trouble because they can be treated as consisting of a number of smooth pieces.

Example 3.1. The defining characteristic of a curve is that near any of its points, it can be
parametrized “nicely” by a single parameter. Intuitively, to parametrize a surface, we need to
use two parameters. Let Ω = (−1, 1)2 ⊂ R2, and let Ψ : Ω→ R3 be continuously differentiable
in Ω. We imagine that the set S = {Ψ(x) : x ∈ Ω} is a piece of a surface in R3, so that Ψ is
its parametrization. Consider the 2-dimensional curve γα(t) = αt, t ∈ (−1, 1), where α ∈ R2

is a fixed vector. Under the parametrization Ψ, this curve becomes the 3-dimensional curve
ηα(t) = Ψ(αt), which is contained in the surface S. The velocity vector of ηα at ηα(0) ∈ S is

η′α(0) = DΨ(0)γ′α(0) = DΨ(0)α =
∂Ψ

∂x1
(0)α1 +

∂Ψ

∂x2
(0)α2, (45)

where α = (α1, α2) ∈ R2. If S is a smooth surface, then we expect that the velocity vectors
η′α(0) with different α ∈ R2 are not all aligned to each other. In light of the preceding formula,
this means that the columns of DΨ(0) are expected to be linearly independent.

The linear independence condition discussed in the preceding example will appear in the
definition of surfaces. Before that, we need to introduce the concept of open sets.

Definition 3.2. A set Ω ⊂ Rn is called open if for any p ∈ Ω, there is δ > 0 such that
Qδ(p) ⊂ Ω.
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Example 3.3. (a) The square Ω = (0, 1)2 is open, because given any (x, y) ∈ Ω, we have
(x− δ, x+ δ)× (y − δ, y + δ) ⊂ Ω for δ = min{x, 1− x, y, 1− y}.

(b) Ω = [0, 1)2 is not open, because taking p = (0, 0) ∈ Ω, there is no δ > 0 with Qδ(p) ⊂ Ω.
(c) The disk Ω = {(x, y) : x2 + y2 < 1} is open, because given any (x, y) ∈ Ω, we have

(x− δ, x+ δ)× (y − δ, y + δ) ⊂ Ω for δ =
√

1− x2 − y2/
√

2.

Definition 3.4. A set M ⊂ Rn+1 is called a hypersurface if for each p ∈M , there exist open
sets U ⊂ Rn, Ω ⊂ Rn, and a map Ψ : Ω→ Rn+1 such that

(i) U ∩M = Ψ(Ω) and p ∈ U ∩M .
(ii) Ψ is injective, and continuously differentiable.
(iii) For each x ∈ Ω, the columns of DΨ(x) are linearly independent.

If n = 2, M is called a surface. In this setting, Ψ is called a local parametrization, and the triple
(Ψ,Ω, U ∩M) is called a coordinate chart. Since Ψ is injective, the inverse Ψ−1 : U ∩M → Ω
exists, and it is called a local coordinate system on M .

Example 3.5. Let us introduce local parametrization for the 2-sphere S2 = {y ∈ R3 :
y21 + y22 + y23 = 1}. Pick an arbitrary point y∗ ∈ S2. We will consider 6 different cases,
corresponding to 6 coordinate charts covering S2. The first case is y∗3 > 0. In this case, we

set U = {y ∈ R3 : y3 > 0}, Ω = {x ∈ R2 : x21 + x22 < 1}, and Ψ(x) = (x1, x2,
√

1− x21 − x22).
It is easy to see that U ∩ S2 = Ψ(Ω), and Ψ is injective. Moreover, we have

DΨ(x) =

 1 0
0 1

−x1/y3 −x2/y3

 , (46)

where y3 =
√

1− x21 − x22, which shows that Ψ is continuously differentiable in Ω, and that
the columns of Ψ(x) are linearly independent for each x ∈ Ω. The remaining 5 cases are (ii)
y∗3 < 0, (iii) y∗3 = 0 and y∗2 > 0, (iv) y∗3 = 0 and y∗2 < 0, (v) y∗3 = y∗2 = 0 and y∗1 > 0, and
finally, (vi) y∗3 = y∗2 = 0 and y∗1 < 0. All these cases can be handled similarly to the first case,
with each case corresponding to the positive or the negative half of a coordinate axis, and its
associated hemisphere.

Definition 3.6. Given a hypersurface M ⊂ Rn+1 and its point p ∈ M , the tangent space of
M at p is defined as

TpM = {γ′(0) : γ is a curve on M with γ(0) = p}. (47)

Example 3.7. Let us identify the tangent space TpS
2, for p = (x, y, z), z > 0. Consider an

arbitrary curve γ on S2 with γ(0) = p. Taking the derivative of the relation γ1(t)
2 + γ2(t)

2 +
γ3(t)

2 = 1 with respect to t, we get

γ1(t)γ
′
1(t) + γ2(t)γ

′
2(t) + γ3(t)γ

′
3(t) = 0, (48)

and therefore

xγ′1(0) + yγ′2(0) + zγ′3(0) = 0. (49)

This shows that TpS
2 ⊂ X, where X = {V ∈ R3 : V >p = 0}. Geometrically, X is the space

perpendicular to the vector p. Now let V = (a, b, c) be an arbitrary element of X, meaning
that ax+ by + cz = 0, and let

γ(t) =

 x+ at
y + bt√

1− (x+ at)2 − (y + bt)2

 . (50)
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By construction, we have γ(0) = p. We also have

d
√

1− (x+ at)2 − (y + bt)2

dt

∣∣∣∣∣
t=0

=
−a(x+ at)− b(y + bt)√
1− (x+ at)2 − (y + bt)2

∣∣∣∣∣
t=0

=
−ax− by√
1− x2 − y2

, (51)

and hence

γ′(0) =

 a
b

−(ax+ by)/z

 =

ab
c

 = V, (52)

where we have used the fact that ax + by + cz = 0. This implies V ∈ TpS
2, and as V is

an arbitrary element of X, we have X ⊂ TpS
2. Since we already established TpS

2 ⊂ X, we

conclude that TpS
2 = X ≡ {V ∈ R3 : V >p = 0}.

Remark 3.8. Let M ⊂ Rn+1 be a hypersurface, and let Ψ : Ω→M be a local parametriza-
tion. Then any curve γ on M passing through the point p ∈ Ψ(Ω) can be written as

γ(t) = Ψ(η(t)), (53)

with some curve η in Ω. Without loss of generality, assuming that p = Ψ(q) with q = η(0),
hence that p = γ(0), we have

γ′(0) = DΨ(q)η′(0). (54)

As η′(0) ∈ Rn can take arbitrary values, we conclude that the tangent space TpM is spanned
by the columns of DΨ(q):

TpM = {DΨ(q)V : V ∈ Rn}. (55)

In fact, the columns of DΨ(q) form a basis of TpM , since they are linearly independent.

Example 3.9. The unit 2-sphere S2 can be described locally (at least for θ 6= 0) by the
parametrization

Ψ(θ, φ) =

cos θ cosφ
cos θ sinφ

sin θ

 . (56)

Therefore the tangent space TpS
2 at p = Ψ(θ, φ) has the columns of

DΨ(θ, φ) =

− sin θ cosφ − cos θ sinφ
− sin θ sinφ cos θ cosφ

cos θ 0

 , (57)

as a basis.

4. Inverse functions: Univariate case

Let f : Rn → Rn and α ∈ Rn, and consider the equation f(x) = α for the unknown
x ∈ Rn. If this equation has a unique solution for all α ∈ U , where U ⊂ Rn is some set, the
correspondence α 7→ x defines the inverse function f−1 : U → Rn of f on U .

Definition 4.1. Let K ⊂ Rn and U ⊂ Rn, and let f : K → U be bijective, i.e., for each
α ∈ U there is a unique x ∈ K such that f(x) = α. Then the function g : U → K defined by
g(f(x)) = x for x ∈ K is called the inverse function of f , and denoted by f−1 = g.

The inverse function theorem is the answer to the invertibility question from a differentiable
point of view. Suppose that f : K → Rn is differentiable at x∗ ∈ K, that is, there is Λ ∈ Rn×n
such that

f(x) ≈ f(x∗) + Λ(x− x∗) as x→ x∗. (58)
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If we define g : Rn → Rn by g(x) = f(x∗) + Λ(x−x∗), then f(x) ≈ g(x) when x is close to x∗.
Moreover, g is invertible if and only if Λ is an invertible matrix. Now, the question is given
that g is invertible, can we conclude that f is invertible in a “small” region containing x∗?

Let us consider the case n = 1 first. Suppose that f : (a, b)→ R is differentiable at x∗ with
f ′(x∗) 6= 0 for some x∗ ∈ (a, b). Is it true that f is invertible in (x∗−r, x∗+r) for some r > 0?
However, the following exercise shows that the answer is negative even if f is differentiable
everywhere.

Exercise 4.2. Consider the function f : R→ R defined by

f(x) =

{
1
2x+ x2 sin 1

x for x 6= 0,

0 for x = 0.
(59)

Show that f is differentiable everywhere, and f ′(0) 6= 0, but f is not invertible in (−r, r) for
any r > 0. Is f ′ continuous at 0?

Thus, we need a stronger assumption, and our updated assumption is that f : (a, b) → R
is continuously differentiable in (a, b), and that f ′(x∗) 6= 0 for some x∗ ∈ (a, b). Under this
assumption, it is true that f is invertible in (x∗ − r, x∗ + r) for some r > 0.

Theorem 4.3 (Univariate inverse function theorem). Let f : (a, b) → R be continuously
differentiable in (a, b), and let f ′(x∗) 6= 0 for some x∗ ∈ (a, b). Then there exists r > 0 such
that f is invertible in I = (x∗− r, x∗+ r), and for x ∈ I, the inverse function is differentiable
at f(x) whenever f ′(x) 6= 0, with

(f−1)′(f(x)) =
1

f ′(x)
. (60)

In particular, f−1 and (f−1)′ are continuous at f(x) with x ∈ I whenever f ′(x) 6= 0.

Exercise 4.4. The function f(x) = x3 has the inverse f−1(y) = 3
√
y for all y ∈ R, but

f ′(0) = 0. How is this compatible with the inverse function theorem?

Exercise 4.5. Let f : (a, b)→ (c, d) be a continuously differentiable function, whose inverse
f−1 : (c, d)→ (a, b) is also continuously differentiable. Show that f ′(x) 6= 0 for all x ∈ (a, b).

5. The inverse function theorem

The purpose of this section is to extend the inverse function theorem to n-dimensions.
Let Q = (a1, b1) × . . . × (an, bn) ⊂ Rn be a rectangular domain, and let f : Q → Rn be
differentiable in Q. Then the derivative Df can be considered as a function sending Q to
Rn×n, and we will assume that this function is continuous. In other words, we assume that
f : Q→ Rn is continuously differentiable in Q. Furthermore, we consider some point x∗ ∈ Q,
and suppose that the matrix Df(x∗) ∈ Rn×n is invertible. Recall that a matrix is invertible
(or nonsingular) if and only if its determinant is nonzero.

Theorem 5.1 (Inverse function theorem). Let Q ⊂ Rn be a rectangular domain, and let
f : Q → Rn be continuously differentiable in Q. Suppose that Df(x∗) is invertible for some
x∗ ∈ Q. Then there exists r > 0 such that f is invertible in Qr(x

∗), and the inverse function
is differentiable in f(Qr(x

∗)), with

Df−1(f(x)) = (Df(x))−1, x ∈ Qr(x∗). (61)

In particular, f−1 and Df−1 are continuous in f(Qr(x
∗)), and moreover, there is ε > 0 such

that Qε(y
∗) ⊂ f(Qr(x

∗)).
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Example 5.2. Consider the map (u, v) = F (x, y) given by{
u = x2 + y2,

v = (x− 1)2 + y2.
(62)

Its derivative is

DF (x, y) =

(
2x 2y

2(x− 1) 2y

)
. (63)

We can also compute
detDF (x, y) = 4y, (64)

and for y 6= 0,

[DF (x, y)]−1 =
1

2y

(
y −y

1− x x

)
. (65)

We want to invert F near (x∗, y∗) = (0, 1). Since DF (0, 1) is invertible, by the inverse function
theorem, there is r > 0 such that F is invertible in Qr(0, 1) = (−r, r)×(1−r, 1+r). Moreover,
the derivative of the inverse is given by

DF−1(u, v) = DF−1(F (x, y)) =
1

2y

(
y −y

1− x x

)
. (66)

Example 5.3. Consider the map Ψ : R2 → R2, defined by Ψ(r, φ) = (r cosφ, r sinφ). With
x = x(r, φ) = r cosφ and y = y(r, φ) = r sinφ denoting the components of Ψ, the Jacobian of
Ψ and its determinant are given by

J =

(
∂rx ∂φx
∂ry ∂φy

)
=

(
cosφ −r sinφ
sinφ r cosφ

)
, and detJ = r. (67)

Since J is a continuous function of (r, φ) ∈ R2, the map Ψ is differentiable in R2, with DΨ = J .
Moreover, DΨ(r, φ) is invertible whenever r 6= 0, and

(DΨ)−1 =
1

r

(
r cosφ r sinφ
− sinφ cosφ

)
. (68)

By the inverse function theorem, for any (r∗, φ∗) ∈ R2 with r∗ 6= 0, there exists δ > 0 such
that Ψ is invertible in (r∗ − δ, r∗ + δ)× (φ∗ − δ, φ∗ + δ), with

DΨ−1(x, y) =

(
∂xr ∂yr
∂xφ ∂yφ

)
=

1

r

(
r cosφ r sinφ
− sinφ cosφ

)
, (69)

where r = r(x, y) and φ = φ(x, y) are now understood to be the components of Ψ−1. Note that
Ψ−1 is guaranteed to satisfy Ψ−1(Ψ(r, φ)) = (r, φ) for all (r, φ) ∈ (r∗−δ, r∗+δ)×(φ∗−δ, φ∗+δ),
and nothing more, so that we would have a potentially different inverse function Ψ−1 to Ψ if
we change the centre (r∗, φ∗) ∈ R2 and apply the inverse function theorem again. In practice,
it does not cause much trouble because we usually work in one such region at a time.

6. The implicit function theorem

In this section, we want to investigate if the equation g(x, y) = 0 can be solved as y = y(x).
The results will be applied in the next section to derive a convenient criterion to recognize if
a set of the form {z : φ(z) = 0} is a smooth curve or a surface. Our approach is based on
differentiability, meaning that we fix some point (x∗, y∗), and approximate g as

g(x, y) ≈ g(x∗, y∗) + ∂xg(x∗, y∗)(x− x∗) + ∂yg(x∗, y∗)(y − y∗), (70)

for y ≈ y∗ and x ≈ x∗. If ∂yg(x∗, y∗) 6= 0, this approximate equation can be solved for y:

y − y∗ ≈
g(x, y)− g(x∗, y∗)− ∂xg(x∗, y∗)(x− x∗)

∂yg(x∗, y∗)
. (71)
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Solving this equation for g(x, y) 6= g(x∗, y∗) would not yield a good approximation, because
then x ≈ x∗ would not imply y ≈ y∗. Thus we put g(x, y) = g(x∗, y∗) = 0, and get

y − y∗ ≈ −
∂xg(x∗, y∗)

∂yg(x∗, y∗)
(x− x∗). (72)

This suggests that the conditions g(x∗, y∗) = 0 and ∂yg(x∗, y∗) 6= 0 might be sufficient to solve
g(x, y) = 0 for a function y = y(x), at least when x is in a small interval containing x∗. In
the following remark, we will justify this expectation in full detail.

Remark 6.1. Let Qa = (−a, a)2 ⊂ R2 be an open square, with a > 0, and let g : Qa → R
be a continuously differentiable function, satisfying g(0, 0) = 0 and ∂yg(0, 0) 6= 0. We want
to find a function y = h(x), defined for x ∈ (−δ, δ) with some δ > 0, such that g(x, h(x)) = 0
for all x ∈ (−δ, δ). Note that the point (x∗, y∗) from the previous discussion is now the
origin. This is no loss of generality, since we may think of g(x, y) as g̃(x∗ + x, y∗ + y) for
some function g̃. To proceed further, we introduce the auxiliary map f : Qa → R2, given
by f(x, y) = (x, g(x, y)) for (x, y) ∈ Qa. The motivation for considering such a map is that
if we can solve f(x, y) = (α, 0) for (x, y) depending on α, then we would have x = α and
g(α, y(α)) = 0. In order to invert f near the origin, we shall invoke the inverse function
theorem. The Jacobian of f is

J(x, y) =

(
1 0

∂xg(x, y) ∂yg(x, y)

)
, (73)

and since g is continuously differentiable, J is continuous in Qa, and hence we conclude that
f is continuously differentiable in Qa with Df = J . At the origin, Df is invertible, and

(Df)−1 =

(
1 0

−∂xg/∂yg 1/∂yg

)
, (74)

where all functions are evaluated at the origin 0 ∈ R2. Now the inverse function theorem
guarantees that there exist of r > 0 and f−1 : f(Qr) → R2, satisfying f−1(f(x, y)) = (x, y)
for all (x, y) ∈ Qr. Note that f−1(0, 0) = (0, 0). Moreover, Df(x, y) is nonsingular for each
(x, y) ∈ Qr, and f−1 is continuously differentiable with Df−1 ◦ f = (Df)−1 in Qr. If we
let f−1(α, β) = (x(α, β), y(α, β)), then from f(f−1(α, β)) = (α, β), we infer that x(α, β) = α
and g(α, y(α, β)) = β for (α, β) ∈ f(Qr). In addition to what we have already mentioned,
the inverse function theorem tells us that there is δ > 0 such that Qδ ∈ f(Qr), implying that
we have g(α, y(α, β)) = β for all (α, β) ∈ Qδ. In particular, setting h(α) = y(α, 0), we get
g(α, h(α)) = 0 for all α ∈ (−δ, δ). From f−1(0, 0) = (0, 0), we get h(0) = 0.

The function h we found in the preceding paragraph in fact solves our problem, but our
assumptions are strong enough to yield additional results. As a component of f−1, the function
y = y(α, β) is continuously differentiable in Qδ, and we have

Df−1 =

(
1 0
∂αy ∂βy

)
. (75)

Comparing this with (74), we get ∂αy ◦ f = −∂xg/∂yg and ∂βy ◦ f = 1/∂yg. In particular,
taking into account that h′(α) = ∂αy(α, 0), we conclude that

h′(x) = −∂xg(x, h(x))

∂yg(x, h(x))
, for x ∈ (−δ, δ). (76)

Before closing this remark, we make one crucial observation. Fix x ∈ (−δ, δ), and consider
I = {(x, y) : y ∈ (−r, r)}. The map f sends I to f(I) = {(x, g(x, y)) : y ∈ (−r, r)} ⊂ f(Qr).
Since f is invertible in Qr, the only point (x, y) ∈ I with g(x, y) = 0 is (x, h(x)). In other
words, apart from the curve {(x, h(x)) : x ∈ (−δ, δ)}, there are no other points (x, y) exist in
the rectangle (−δ, δ)× (−r, r) satisfying g(x, y) = 0.
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The preceding remark is the implicit function theorem in two dimensions.

Example 6.2. (a) Let us apply the implicit function theorem to the equation x2 + y2 = 1.
Thus we set g(x, y) = x2 + y2 − 1, and compute ∂yg(x, y) = 2y. This means that as long
as (x∗, y∗) satisfies g(x∗, y∗) = 0 and y∗ 6= 0, we can apply the result at the point (x∗, y∗),
and infer the existence of δ > 0 and h : (x∗ − δ, x∗ + δ)→ R such that g(x, h(x)) = 0 for
all x ∈ (x∗ − δ, x∗ + δ). We can also compute the derivative of h as

h′(x) = −∂xg(x, y)

∂yg(x, y)
= −2x

2y
= − x

h(x)
, for x ∈ (x∗ − δ, x∗ + δ). (77)

The intuitive reason why the case y∗ = 0 must be excluded is the fact that then the
derivative h′(x∗) would have to become infinity.

(b) Let g(x, y) = y3−x, and let us try to solve g(x, y) = 0 for y = y(x) near (x, y) = (0, 0). We
have g(0, 0) = 0, but ∂yg(0, 0) = (3y2)|y=0 = 0. Therefore the implicit function theorem
cannot be applied, even though we can explicitly solve the equation as y(x) = 3

√
x. This

has of course to do with the fact that 3
√
x is not differentiable at x = 0.

(c) Let g(x, y) = x2 − y2, and let us try to solve g(x, y) = 0 for y = y(x) near (x, y) = (0, 0).
We have g(0, 0) = 0, but ∂yg(0, 0) = (−2y)|y=0 = 0, and hence the implicit function
theorem cannot be applied. A close inspection reveals that the solution of g(x, y) = 0 is
y = ±x, which cannot be written as a function y = y(x) near (x, y) = (0, 0).

Let Ω ⊂ Rn and Σ ⊂ Rm be open sets. Then their product Ω× Σ ⊂ Rn+m is given by

Ω× Σ = {(x, y) : x ∈ Ω, y ∈ Σ}, (78)

where (x, y) = (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m. Let g : Ω × Σ → Rm be a differentiable
function. The value of g at (x, y) ∈ Ω × Σ is denoted by g(x, y) ∈ Rm. For any fixed x ∈ Ω,
the correspondence y 7→ g(x, y) is a function of y ∈ Σ, and its derivative will be denoted by
Dyg Similarly, we can introduce Dxg. In the following, sometimes it will be convenient to
specify the dimension of a cube in the notation, as in Qnr (a) = (a− r, a+ r)n ⊂ Rn.

Theorem 6.3. Let Ω ⊂ Rn and Σ ⊂ Rm be open sets, and let g : Ω×Σ→ Rm be continuously
differentiable. Suppose that (a, b) ∈ Ω× Σ satisfies g(a, b) = 0, and that Dyg(a, b) is nonsin-
gular. Then there exist δ > 0 and h : Qnδ (a) → Rm with h(a) = b, such that g(x, h(x)) = 0
for all x ∈ Qnδ (a). Moreover, h is continuously differentiable in Qnδ (a), with

Dh(x) = −(Dyg(x, h(x)))−1Dxg(x, h(x)), x ∈ Qnδ (a), (79)

and we have {(x, h(x)) : x ∈ Qnδ (a)} = {(x, y) ∈ Qnδ (a)×Qmr (b) : g(x, y) = 0} for some r > 0.

Example 6.4. (a) Consider the equation

g(x, y, z) ≡ sin(xy + z) + log(yz2) = 0. (80)

The triple p = (x, y, z) = (1, 1,−1) is a solution: g(1, 1,−1) = 0, and g is continuously
differentiable in the open set {(x, y, z) : x ∈ R, y > 0, z < 0}. Can we express z as a
function of x and y near p? This is exactly the kind of question that could be answered
by the implicit function theorem. We have

∂zg(x, y, z) = cos(xy + z) +
2z

yz2
= cos(xy + z) +

2

yz
, (81)

and hence

∂zg(1, 1,−1) = cos 0− 2 = −1 6= 0. (82)

Thus there exist δ > 0 and a continuously differentiable function h : Q2
δ(1, 1) → R such

that g(x, y, h(x, y)) = 0 for all (x, y) ∈ Q2
δ(1, 1).
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(b) Can we solve

xu2 + yzv + x2z = 3,

yv5 + zu2 − xv = 1,
(83)

for (u, v) near (1, 1) as a function of (x, y, z) near (1, 1, 1)? We can formulate the problem
as solving g(α, β) = 0 for β = β(α), where α = (x, y, z), β = (u, v), and

g(α, β) = g(x, y, z, u, v) =

(
xu2 + yxv + x2z − 3
yv5 + 2zu− v2 − 2

)
. (84)

Obviously, g is continuously differentiable in R5, and g(1, 1, 1, 1, 1) = 0. We can compute
the relevant derivative as

Dβg(α, β) =

(
2xu yz
2zu 5yv4 − x

)
. (85)

so that the matrix

Dβg(1, 1, 1, 1, 1) =

(
2 1
2 4

)
, (86)

is invertible. Thus there exist δ > 0 and h : Q3
δ(1, 1, 1) → R2 continuously differentiable,

such that g(α, h(α)) = 0 for all α ∈ Q3
δ(1, 1, 1).

7. Level curves and surfaces

With the implicit function theorem at hand, we are now ready to answer the question when
the equation φ(x) = 0 defines a smooth curve or surface. We discuss the two dimensional
case first, as it involves most of the main ideas. Thus let g : R2 → R be a continuously
differentiable function, and let L = {(x, y) ∈ R2 : g(x, y) = 0}. We assume that Dg(x, y) 6= 0
for all (x, y) ∈ L, that is, at least one component of Dg(x, y) ∈ R1×2 is nonzero whenever
(x, y) satisfies g(x, y) = 0. Under these assumptions, we want to show that L is a differentiable
curve.

Pick an arbitrary point (x̄, ȳ) ∈ L, and we shall build a parametrization of L near this
point. We will consider the cases ∂yg(x̄, ȳ) 6= 0 and ∂yg(x̄, ȳ) = 0 separately.

Case 1. We assume that ∂yg(x̄, ȳ) 6= 0. Then the implicit function theorem guarantees
that we can write y in terms of x at least when x is near x̄. Namely, there exist δ > 0 and
a continuously differentiable function h : I → R such that g(x, h(x)) = 0 for all x ∈ I, with
I = (x̄ − δ, x̄ + δ). Moreover, apart from the curve {(x, h(x)) : x ∈ I}, there are no other
points (x, y) exist in the rectangle U = I × (ȳ − r, ȳ + r) satisfying g(x, y) = 0, where r > 0
is some constant. Therefore, with Ψ : I → R2 defined by Ψ(t) = (t, h(t)), conditions (i) and
(ii) are satisfied. Moreover, we have Ψ′(t) = (1, h′(t)) 6= 0.

Case 2. We assume that ∂yg(x̄, ȳ) = 0. In this case, we must have ∂xg(x̄, ȳ) 6= 0, because
Dg(x̄, ȳ) 6= 0, and hence the preceding arguments apply with the roles of x and y switched.

We have proved the following result.

Theorem 7.1 (Level curve theorem). Let A ⊂ R2 be an open set, and let g : A → R be a
continuously differentiable function. Suppose that ∇g(x, y) 6= 0 whenever (x, y) ∈ A satisfies
g(x, y) = 0. Then the set L = {(x, y) ∈ A : g(x, y) = 0} is a differentiable curve.

Example 7.2. Consider g(x, y) = x2 +y2−ρ, where ρ ∈ R is some constant. This function is
continuously differentiable in R2, with ∇g(x, y) = (2x, 2y) ∈ R1×2. We see that ∇g(x, y) = 0
if and only if x = y = 0. Now let L = {(x, y) : g(x, y) = 0}.

• If ρ = 0, then L is a single point {(0, 0)}, and ∇g = 0 there. Hence the level curve
theorem cannot be applied.
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• If ρ < 0, then L = ∅. Since (0, 0) 6∈ L, we have ∇g(x, y) 6= 0 for all (x, y) ∈ L. Thus
the level curve theorem can be applied, to conclude that L is a curve. This example
suggests that it is always a good idea to explicitly check if the equations define a
nonempty set, in order not to waste efforts working with an empty set.
• If ρ > 0, then L is nonempty, because, for example, we have (0,

√
ρ) ∈ L. Moreover,

we have (0, 0) 6∈ L, implying that ∇g(x, y) 6= 0 for all (x, y) ∈ L. This means that L
is a differentiable curve.

Example 7.3. Consider the equation

(x2 + y2)2 = x2 − y2, (87)

for Bernoulli’s lemniscate. We may think of it as the 0-level set of the function

φ(x, y) = (x2 + y2)2 − x2 + y2, (88)

whose gradient is

∇φ(x, y) = (4x(x2 + y2)− 2x, 4x(x2 + y2) + 2y). (89)

Let us identify the points at which this gradient vector vanishes. First, for x = 0, we have
∇φ(0, y) = (0, 2y), and so y = 0 is the only point on the y-axis with ∇φ = 0. Next, assuming
x 6= 0, from the condition 4x(x2 + y2)− 2x = 0 for the first component, we get

x2 + y2 = 1
2 , (90)

and substituting this into the second component yields the condition

2x+ 2y = 0. (91)

Thus, the points at which ∇φ = 0 are (0, 0), (12 ,−
1
2), and (−1

2 ,
1
2). Among these, only (0, 0)

is on the lemniscate, because

φ(±1
2 ,∓

1
2) = 1

4 6= 0. (92)

To conclude, Bernoulli’s lemniscate can be described by a smooth parametrization except
near the point (0, 0). The reason for this is that (0, 0) is a self-intersection point.

Theorem 7.4 (Level surface theorem). Let A ⊂ Rn be an open set, and let φ : A → R
be a continuously differentiable function. Suppose that ∇φ(x) 6= 0 whenever x ∈ A satisfies
φ(x) = 0. Then the set M = {x ∈ A : φ(x) = 0} is a hypersurface in Rn.

Example 7.5. Let a ∈ Rn be a nonzero vector, and let

M = {x ∈ Rn : a1x
2
1 + a2x

2
2 + . . .+ anx

2
n = 1}. (93)

We would like to show that M is a hypersurface. Thus we let

φ(x) = a1x
2
1 + a2x

2
2 + . . .+ anx

2
n − 1, (94)

so that M = {φ = 0}, and compute

∇φ(x) = (2a1x1, 2a2x2, . . . , 2anxn). (95)

Since a is a nonzero vector, ∇φ(x) = 0 if and only if x = 0. We know that 0 6∈ M , because
φ(0) = −1, and hence ∇φ(x) 6= 0 for all x ∈M . Then the level surface theorem implies that
M is a hypersurface in Rn.

Remark 7.6. Let M ⊂ Rn+1 be a hypersurface, described by the equation φ(x) = 0, where
φ : Rn+1 → R is a continuously differentiable function with ∇φ(x) 6= 0 for all x ∈ M . Then
for any curve γ on M , we have φ(γ(t)) = 0 for all t, Putting p = γ(0), differentiation gives

∇φ(p)γ′(0) = 0. (96)



PARAMETRIZATIONS AND LOCI 17

By definition, the vector γ′(0) represents an arbitrary vector in the tangent space TpM , and
hence we conclude that

TpM ⊂ ker∇φ(p). (97)

Since dim ker∇φ(p) ≤ n− 1 and dimTpM = n− 1, we conclude that

TpM = ker∇φ(p). (98)

Example 7.7. Let Sn−1 = {x ∈ Rn : x>x = 1}, which can be written as {φ(x) = 0} with
φ(x) = x>x− 1. Then ∇φ(x) = 2x>, and hence

TxS
n−1 = ker∇φ(x) = {V ∈ Rn : x>V = 0}. (99)

8. Locus curves

If φ is a scalar function, then φ(x) = 0 is just “one condition on x,” so that the equation
φ(x) = 0 cannot “reduce the dimension of the underlying space by more than one.” That is
to say, the equation φ(x) = 0 might be able to describe a surface in R3, but never a curve in
R3, because in the latter case we would need to “reduce the dimension of R3 by 2” to get a
curve, which is a 1-dimensional object. To describe a curve in R3, we need a vector valued
function of the form φ : R3 → R2.

Theorem 8.1 (Locus curve theorem). Let A ⊂ R3 be an open set, and let φ : A → R2 be a
continuously differentiable function. Suppose that for each x ∈ A satisfying φ(x) = 0, there is
a 2 × 2 submatrix of Dφ(x) that is nonsingular. Then the set M = {x ∈ A : φ(x) = 0} is a
differentiable curve.

Example 8.2. Consider the intersection L between the unit sphere

x2 + y2 + z2 = 1, (100)

and the plane
x+ y + z = 0. (101)

This can be written as the 0-locus of the map φ : R3 → R2 given by

φ(x, y, z) =

(
x2 + y2 + z2 − 1

x+ y + z

)
. (102)

Its derivative is

Dφ(x, y, z) =

(
2x 2y 2z
1 1 1

)
, (103)

and the determinants of two of the 2× 2 submatrices are

det

(
2x 2y
1 1

)
= 2(x− y), det

(
2y 2z
1 1

)
= 2(y − z). (104)

There is no point on L satisfying x = y = z, meaning that if x = y then y 6= z. Hence at least
one of the aforementioned determinants is nonzero, and so L is a smooth curve. The tangent
space of L can be found as the intersection of two tangent spaces, that is, as the collection of
vectors orthogonal to both the gradient of x2 + y2 + z2 − 1 and the gradient of x+ y + z.
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