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1. ANTIDIFFERENTIATION IN ELEMENTARY TERMS
Consider the problem of finding F' satisfying
F' =f, (1)

where f is a given function. Given f, finding F' is called antidifferentiation, and F' is called
an antiderivative of f.

Remark 1.1. Suppose that f is a function defined on (a,b), and let F = G’ = f on (a,b),
that is, let F' and G be antiderivatives of f. Then (F — G) = F/ — G’ = 0 on (a,b), and
invoking the mean value theorem we infer that

F(x)=G(z)+C, x € (a,b), (2)

for some constant C' € R. On the other hand, if G’ = f on (a,b), and if C' € R, then a new
function F' defined by (2) is also an antiderivetive of f, because

Fl(z) = (G(z)+ C) =G (z) + 0= f(x), x € (a,b). (3)

What this means is that the antiderivative of a given function can only be found up to
an additive constant, and that if we know one antiderivative of a given function, all other
antiderivatives are found by adding an arbitrary constant to it.

Definition 1.2. Let G be an antiderivative of g on some interval (a,b), i.e., let G'(z) = g(x)
for € (a,b). Then the set of all antiderivatives of g is denoted by

/g(a:)dx ={G+C:C eR}, (4)
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which is called the indefinite integral of g. Alternatively and more informally, it is a standard
practice to think of the indefinite integral as a notation for infinitely many functions (one
function for each value of C' € R), and write

[ sta)ts =6ty + o)
where C' € R is considered to be an “arbitrary constant.”

Example 1.3. (a) We have G’ = 0 for the zero function G(z) = 0, i.e., G = 0 is an anti-
derivative of g = 0. Hence we can write

/de:0+(1=0. (6)

(b) More generally, for @ € R we have (z*)' = az®"! at each z > 0, i.e., G(z) = 12® is an
antiderivative of g(z) = %1 on the interval (0, c0), for each o € R\ {0}. Hence we have

/xo‘_ldx =2 40 (7)
o
for « € R\ {0}. Note that if & € N, the relation G'(z) = g(z) is true for x € R, and if

a€{-1,-2,-3,...}, it is true for x € R\ {0}.
(c) As for the case o = 0, we recall (logz) = 2 for 2 > 0, which leads to

/C;x:logx+0. (8)

(d) Since (e*) = e® for z € R, we have

/e”dm =e"+C. 9)
(e) From (sinz) = cosz and (cosz) = —sinzx for z € R, we infer
/cosa:da::sina:—i—()’, and /sinmdx:—cosx—i—C’. (10)

(f) Similarly, we have

d d
/ 1 +xx2 = arctanz + C, and /Jlfixz = arcsinz + C, (11)

where the former is valid for € R, and the latter is for z € (—1,1).

Exercise 1.4. By a direct guess, find the indefinite integrals of the following functions.

(2) g(z) = (cosz) ™.

(b) g(x) =2sinxcosx.

(c) g(z) = €**.

(d) g(z) = 2.

Example 1.5. (a) Since (223 + €%)" = 2(23)’ + (e*)' = 622 + €, we have

/(61’2 +e")dr = 22% + e + C. (12)
(b) Let @ € R be a constant. Then we have (sin(ax))’ = a cos(ax), and hence
/cos(aa:)dx = sinax) +C for a#0. (13)
a
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(c) We have (loglogz)’ = loéx - =, which means that
d
/ i loglogz + C. (14)
zlogx

Remark 1.6. Starting with the power functions z* (a € R), the exponential, logarithm,
trigonometric and inverse trigonometric functions, and by combining them by using finitely
many addition, subtraction, multiplication, quotient, and composition operations, we can
generate a wide variety of functions. Let us call these functions elementary functions. Then
the derivative of an elementary function is an elementary function, because we have differen-
tiation rules that tell us how to compute (f +g)’, (fg)’, (fog)’, etc based on the knowledge
of f and ¢’. Each differentiation rule can be applied “in reverse” to compute antiderivatives
of a large number of elementary functions. However, these “antidifferentiation rules” cannot
give antiderivatives of all elementary functions, because as discovered by Joseph Liouville
around 1840, there are elementary functions whose antiderivatives are not elementary. As a
reflection, for example, there is no useful formula that gives an antiderivative of fg, based on
antiderivatives of f and g. This makes antidifferentiation of elementary functions somewhat of
a challenge, as opposed to differentiation, which is completely straightforward. Nevertheless,
there exist algorithms, such as the Risch algorithm, that can decide whether an elementary
function is the derivative of an elementary function, and if so, compute the antiderivative.
More generally, by using the Riemann integral, we can construct an antiderivative of, say,
any continuous function as the limit of a sequence of functions, and thus demonstrate that
continuous functions admit antiderivatives.

Let us develop a few useful antidifferentiation rules.

Lemma 1.7. a) Let F' = f on (a,b), and let o € R\ {0} be a nonzero constant. Then we
have (aF) = af on (a,b), that is,

/ af(z)dz = a / f(z)da. (15)

b) Let F' = f on (a,b), and let « € R. Then we have
(F(az)) = aF'(az) = af(ar) for =z € (a,b). (16)

In other words, for a # 0 we have

/fax —F(x)+C=— /f )da. (17)

¢) Let F' = f and G' = g on (a,b). Then we have (F + G)' = f + g on (a,b), that is,

/uw»+mMMx=/EWMx+/mme (18)

Exercise 1.8. Give a detailed proof of the preceding lemma. Is (15) true for o = 07

The chain rule of differentiation leads to the following rule for antidifferentiation.
Theorem 1.9 (Substitution). Let F' = f on (a,b), and let ¢ : (c,d) — (a,b) be a differen-
tiable function. Then F o ¢ is an antiderivative of (f o ¢)¢' on (¢,d), that is, we have

[ fondate = o) +c = ([ foa)| . (19)

Proof. Taking into account that F' = f, we get

d

L F(@@) = F'(é()¢'(z) = f($(2))d(x)  for € (c,d), (20)
which shows that F' o ¢ is an antiderivative of (f o ¢)¢' on (¢, d). O
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Recognizing if a given integral is amenable to substitution is the same as deciding if the
expression under the integral can be written in the form f(¢(x))¢'(x).

Example 1.10. We have
1 2y 1 14 22) 1 1
/ T dx:/ (z?) da::/(—l—x)dx:(/dy)‘
V14 z2 2) V1422 2) V1422 2 VY y=1422
1
:(/y_édyﬂ :y% —I—C’:\/l—l-ia:?-i—c.
2 y=1+2x2

y=1+z2
Exercise 1.11. Compute the following indefinite integrals.

(a) / cos?zsinzdz  (b) / 8z +2)e* todx  (c) /

There is no “product rule” for antidifferentiation, and the following statement is basically
the best we can do, in the sense that it is the most useful antidifferentiation rule that can
be derived from the product rule of differentiation. In practical terms, this rule allows us to
replace f¢’ by f’'¢g under integration.

(21)

inl
sinlogz ,

x

Theorem 1.12 (Integration by parts). Let f and g be functions differentiable on (a,b), and
let F' = f'g on (a,b). Then fg — F is an antiderivative of fg' on (a,b), that is, we have

/f(fﬁ)g'(iﬂ)dfﬂ = f(x)g(z) — /f’(ﬂ?)g(if)div- (22)
Proof. By a direct computation, we infer
(fg—F) =fg+td—F=fg+fd—Ffag=1d, (23)
which shows that fg — F is an antiderivative of fg¢’ on (a,b). O
Example 1.13. We have

1
/logwd:n:/logm'(x)'dx:xlogzv—/(logm)'-:ndx:xlogm—/x~a:da:

(24)
:xlogm—/dx:xlogx—x+0.

Exercise 1.14. Compute the following indefinite integrals.
(a) /xexdx (b) /x2 cos zdx (c) / e’ sinzdx

2. THE RIEMANN INTEGRAL FOR UNIVARIATE FUNCTIONS

From the preceding section, we know that the antiderivative of a given function can only be
found up to an additive constant, and that if we know one antiderivative of a given function,
all other antiderivatives are found by adding an arbitrary constant to it.

We also have some useful rules for antidifferentiation, that allow us, for instance, to con-
struct an antiderivative of f + g, given that antiderivatives of f and of g are available. These
rules guarantee that certain elementary functions admit antiderivatives, but the resulting set
of functions is not big enough; They cannot even guarantee that all smooth functions admit
antiderivatives. In modern mathematics how we deal with this problem is to construct an an-
tiderivative F' of a given function f as the limit of some infinite process, known as integration.
Specifically, in these notes, we will study the Riemann integral, which is one of the simplest
yet powerful approach to integration.
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We proceed by identifying some crucial properties of antidifferentiation, which will then
guide us in constructing the Riemann integral. Given f : R — R, whose antiderivative
F : R — R is assumed to exist, we introduce the notation

Ia,:):(f) = F(:C) - F(a)a (25)
where a,z € R. The reason for subtraction is of course to remove the ambiguity given by the
fact that antiderivatives are unique only up to an additive constant. In other words, I, ,(f) is

the value F'(x) of the antiderivative of f, under the normalization that F'(a) = 0. Immediate
corollaries of the definition are

Ia,a(f) =0, (26)
and the following domain additivity property
Ia,z(f) = a,b(f) + Ib,.l’(f)? a, ba z € R. (27)
Then we have linearity, cf. Lemma 1.7, expressed by
Ia,w(af) = aIa,:L"(f)a (28)
for « € R, and
Loo(f +9) = Loo(f) + Laa(9). (29)
Another important property is monotonicity: If a < z and if f < g in [a, z], then
Loo(f) < Taa(9)- (30)
Finally, since (z)" = 1, we have
I .(1) =2 —a. (31)

Remark 2.1. The aforementioned simple properties will be enough to pin down a good
notion of integral. Note that these properties have been derived under the assumption that
all involved functions admit antiderivatives, and what we would like now is to give a general
construction that satisfies those properties, and hope that it will enable us to show that
for instance, smooth functions admit antiderivatives. The basic idea is as follows. Given a
general function f, we want to find a sequence of functions g1, g2, ..., such that each g; is
simple enough so that I, ;(g;) is well-defined, and that g; approximates f better and better
as ¢ — 00. Then we would define I, ;(f) as the limit of I,;(g;) as ¢ — oo. In order for this
plan to work, we need to address the following issues.

Choose the pool of “simple” functions from which the sequence {g;} to be picked.
Clarify the notion “g; approximates f better and better as i — co0.”

Check if I, 4(gi) converges to some number £ € R as i — oo.

Verify that the limit £ does not depend on the particular sequence {g;} we used.

For the first item, we use piecewise constant functions, also known as step functions. These
functions have the form

k
g(@) = Ajxs; (), (32)
j=1

where A; € R, and X, is the characteristic function of some interval J;, such as J; = (aj, bj),

J;j = laj,b;), J;j = (aj,b;], or J; = [a;,b;]. For later reference, we call Ji,...,J; the support
intervals of g. Recall that in general, the characteristic function of a set B C R" is defined by
1 forzeB
T) = ’ 33
xB(@) {O otherwise. (33)

For a nonempty closed interval J = [a, 8] C [a, b], we can compute

Ia,b(XJ) = Ia,a(o ’ 1) + Ia,ﬂ(l) + Iﬁ,b(o ’ 1) =0+ (5 - a) +0=0-q, (34)
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where we have used domain additivity, linearity, and (31). On the other hand, for a nonempty
open interval J = (o, 3) C [a, b], we have

Ia,b(XJ) = a,b(X[a,ﬂ]) - Ia,b(X[a,a]) - Ia,b(X[B,ﬁ]) = (B - Oé) —-0-0= ﬁ — Q. (35)

Similarly, we infer I, 5(X(a,8)) = La,b(X(a,8) = B — @, as long as a < o < 8 < b. To conclude,
for any J C [a, b] of the form J = [, 8], J = [, 8), J = (o, B], or J = (e, ), we have

Ia,b(XJ) = |J|’ (36)

where |J| = f— « is by definition the length of J. Once this is known, we can compute I, 4(g)
for step functions (32) by linearity, as

k k
9) =) AiLap(xs,) =D AjlJl, (37)
= =

where we have assumed that J; C [a, b] for all j.

Remark 2.2. We have restricted ourselves to the case a < b, even though including the case
a > b would not have posed any principal difficulties. However, in order not to clutter the
arguments, we will postpone dealing with the case a > b to Section 4, Remark 4.6.

The next item in the list of Remark 2.1 is to clarify when it would be useful to say that
a sequence of step functions g; approximates f well as ¢ — co. Since we want to eventually
define I, 4(f) = lim I,4(g;), it would be ideal if we introduce closeness of g; to f by
11— 00

g; is close to f <— g < f and I,p(f) — Iop(gs) is small. (38)

However, this would not work, for the simple reason that we have not defined I, ;(f) yet. A
way out of this situation is to introduce a second sequence of step functions {h;}, bounding
f from above, and require that I, ,(h;) — I44(g;) is small, as follows.

g; and h; are close to f — g < f<h; and I,p(hi) —Ipp(g;) is small.  (39)

Intuitively, if {g;} and {h;} satisfy the preceding condition, then both I, (g;) and I, 3 (h;) will
be close to the yet-to-be-defined quantity I, (f).

Example 2.3. Let us illustrate what we have discussed by a concrete example where we
know I, (f) explicitly. We let f(z) =z and [a, b] = [0,b]. For m € N, subdivide [0, b] into m
equal subintervals, by using the node points xi = 0k, k =0,...,m, where § = %. Let

gm(x) = ok and hm(z) = 0k + 6, for € [0k,0k+ 9). (40)

The point x = b is missing in this definition, but it will be inconsequential. For concreteness,
we set gm(b) = 0 and hy,(b) = b. In other words, we have

m—1 m—1
Im = Z Ok X5k 5k+5) b = > (0k + 8)X(sk,5k-+6) T OX[b,0]- (41)
k=0 k=0

By construction, we have g,,(z) < f(z) < hy,(z) for all z € [0,b], and

H

m—

Iop(hin) — Top(gm) = Top(h 6106 (Xion,58+5)) + Lo (X))

—0 (42)

=md -0 =b*/m,
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which can be made arbitrarily small by choosing m large. Thus we have bounded f from
above and below by two step functions, whose integrals are arbitrarily close to each other.
Finally, we compute
m—1 m—1 b2
Top(gm) = Z 6kIop (Xiok,ok+0)) = O
k=0 k=0
which is consistent with the fact that (z2/2)’ = z and so Io,(f) = b?/2. This example gives
us a hope that the limiting procedure under consideration might in fact be able to yield an
antiderivative of a function in general.

—1) b
m2_771(7712)_>2 asm — oo, (43)

(N
oy
I

Remark 2.4. Based on the foregoing discussion, we make some observations.

(a) The support intervals in the definition of step functions (32) may be assumed to be non-
overlapping, since a step function with two overlapping support intervals can be written
as a step function with 3 non-overlapping support intervals.

(b) Similarly, if g and h are step functions, then by subdividing the support intervals if
necessary, we can always assume that g and h have the same support intervals.

(c) Furthermore, all support intervals in (32) may be assumed to be open, because any interval
J with |J| > 0 is the union of an open interval and one or two zero-length intervals, and
zero-length support intervals have no contribution to the integral (37).

(d) One cannot cover [a,b] by disjoint open intervals. So once we assume that all support
intervals in (32) are open and disjoint, there will necessarily be at least a finitely many
points xg, . . ., xx that are not covered by the support intervals, and hence any step function
g with the same set of support intervals will satisfy g(x;) = 0 for j =0, ..., k. This means
that the condition g; < f < h; in [a, b] from (39) cannot be satisfied in general. However,
we can replace it by the condition that g; < f < h; in each support interval, because we
could always add terms such as f (xj)X[xj,xj} to ¢g; and h; to ensure that ¢g; < f < h; in
[a, b], but these additional terms would not affect the value of the integral (37) anyway.

We now introduce some new terminology. A grid on [a,b] is a collection

P = {(z0,71), (x1,72), ..., (Tx—1,7%)}, (44)
of disjoint open intervals, such that [zg,x1] U [x1,22] U ... U [zk_1, 2] = [a,b]. The points
xg, ..., are called the nodes of the grid. We call g : [a,b] — R a step function subordinate

to P if g can be written in the form
g9=">_ AxJ, (45)
JepP

where P is a grid on [a, b], and A; € R for J € P. For step functions, we define

Lip(9) = Y Al (46)

Jer

A refinement of a grid is a grid that is obtained by adding nodes to the original grid. For
example, P = {(0,1),(1,2),(2,4)} is a refinement of P = {(0,2),(2,4)}. If g is a step
function subordinate to a grid P, and if P is a refinement of P, then there is a step function
§ subordinate to P, such that § = ¢ in each J € P. We get § simply by replacing the
characteristic function X (g, 4,,,) in (45) by the sum X (4, 2/) + X(a/,2,,,) €very time a new node
z' € (x4, xi41) is introduced. In particular, we have I,,(g) = I, 5(g). We shall consider the
two step functions g and § as being the same.

Remark 2.5. Let f : [a,b] — R, and suppose that we have two sequences {g;} and {h;},
satisfying the following conditions.

(i) g; and h; are step functions subordinate to some grid P;, for each i.
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(ii) g;i < f < h; in each J € P;, for each i.
(111) Ia,b(hi — gi) — 0 as 1 — oo.

Let a; = I54(9;) and By = Izp(hi). Then from (ii), since g; < f < hy (in each support
interval) for any 7 and k, we have a; < i for all i and k. Let ¢ > 0 be arbitrary, and let NV
be such that ¢ > N implies 8; — a; < e. Then for any ¢ > N and k > N, we have

a; — o < B — o <¢, (47)

implying that {«;} is a Cauchy sequence. Hence there exists £ € R such that o; — £ as
1 — 00. Since §; — a; — 0 as i — 0o, we also get 5; — £ as ¢ — 00, and so £ would be a very
good candidate for the value of I, ;(f) that is yet to be defined.

Exercise 2.6. Continuing the preceding remark, let {g;} and {h;} be two sequences satisfying
the conditions (i)-(iii). Show that the limit & of I, (g;) as ¢ — oo is equal to .

Remark 2.5 and Exercise 2.6 show that as long as {g;} and {h;} are two sequences satisfying
the conditions (i)-(iii) of Remark 2.5, the limit of I, ;(g;) as ¢ — oo exists, and does not depend
on the choice of the sequences {g;} and {h;}. Thus the following definition makes sense.

Iop(f) = lim I,5(:)- (48)
1— 00
We could have also used the upper sequence {h;} in the defintion, since we have
lim I,4(g;) = lim I, (hs). (49)
1— 0 11— 00

This completes the program outlined in Remark2.1. What remains now is to verify if the
procedure (48) would be able to solve the antidifferentiation problem. Before addressing that
question, however, we would like to extend the foregoing construction to higher dimensions.

3. THE RIEMANN INTEGRAL FOR MULTIVARIATE FUNCTIONS
A grid on a rectangle Q = [a1,b1] X ... X [an, by] C R™ is a collection
G={Lhx...xIy:I;eP;,j=1,...,n}, (50)

where Pj is a grid on the interval [a;, b;], for j =1,...,n. We call g: Q@ — R a step function
subordinate to G if g can be written in the form

9= ZAqua (51)

qeG

where G is a grid on @, and A; € R for ¢ € G. The (n-dimensional) volume of a rectangle
g=1 x...xI,is |q| = || -+ |I]-

Definition 3.1. If g is a step function subordinate to a grid G on @, then its integral over

Q is defined as
[ 9= Adal (52)

qeG

Note that in 1 dimension, we have
| 9L, (53)
[a,b]

where I, 4(g) is the notation from the preceding section.

Remark 3.2. (a) If f and g are step functions subordinate to G, and A\, u € R, then we have

/Q(Aerug):A/QfﬂLu/Qg- (54)
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(b) If f and g are step functions subordinate to G, satisfying f < g, then we have

/Qfs/Qg. (55)

To extend the definition of integral to more general functions, we will use approximation
of general functions by step functions.

Definition 3.3. A function f: Q — R is called (Riemann) integrable if for any € > 0, there
exist a grid G¢ on @), and simple functions g. and h. subordinate to G, such that

g < f < he in each q € Gg, (56)
and

/ (he — g.) <. (57)
Q

If f is integrable, we call

[ 1=t [ o (59)

Exercise 3.4. Show that the limit in (58) exists, and does not depend on the choice of {g.}
and {h.}. Show also that

the integral of f over Q.

Cll_r)% an :;1_% th. (59)

Hint: Remark 2.5 and Exercise 2.6.

Remark 3.5. One useful observation is that given a grid G on @), the step functions

g= Z AgXqs and h = Z Byxq, (60)
qeG qeqG
given by
A, =inf f and B, =supf for qe@G, (61)
. q

minimize the quantity fQ(h — g), while satisfying ¢ < f < h in each ¢ € G. Thus we can
always assume that (60) and (61) hold.

Theorem 3.6. Any continuous function f : Q — R is integrable.

Proof. In Theorem 3.8 below, we will prove that f is uniformly continuous, meaning that
for any € > 0, there exists 6 > 0, such that |f(z) — f(y)| < ¢ whenever z,y € @ satisfies
|z — y|oo < 6. Let & > 0 be arbitrary, and pick 6 > 0 according to the preceding property.
Then we choose an integer m € N so large that max{b; —a1,...,b, —a,} < md, and construct
a grid G by subdividing each side of @ = [a1,b1] X ... X [an,by] into m equal subintervals.
This will ensure that the length of each side of any cell ¢ € G is less than ¢, and hence

1f(z) — f(y)| <e whenever z,y €q, qe€G. (62)
Finally, we define the step functions g and h by (60) and (61). By construction, we have
g<f<h ineach ¢ € G. (63)
Moreover, from (62) we have B, — A, < ¢ for all ¢ € G, and thus
[th=9) =SB, - A)ldl <=3 lal = Qe (64
Q 4€G 4€G

As ¢ > 0 was arbitrary, we conclude that f is integrable. O
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To complete the preceding proof, we need to show that the function f in the statement of
the theorem is uniformly continuous.

Definition 3.7. A function u : Q — R with Q C R" is called uniformly continuous if for any
e > 0, there exists 0 > 0, such that |u(z) — u(y)| < & whenever x,y € Q satisfies |z — y|oo < 0.

Theorem 3.8 (Heine-Cantor). Let K C R™ be closed and bounded set, and let f: K — R be
a continuous function. Then f is uniformly continuous.

Proof. Let P = K x K C R?", and let F : P — R be defined by F(z,y) = |f(z) — f(y)|.
Obviously, F' is continuous. Suppose that f is not uniformly continuous. This means that
for any 6 > 0 there exist x,y € K such that |z — y|oc < ¢ and |f(x) — f(y)| > €, where
e > 0 is some constant. In other words, there exists a sequence (z;,y;) € P, i = 1,2,...,
such that |z; — yiloo — 0 as i — oo and F(x;,y;) > € for all i. Since P is bounded, by
considering a large cube () containing P, and subdividing @ into smaller cubes, we can
extract a converging subsequence of {(x;,y;)}. Thus without loss of generality, we can assume
that (z;,v:;) — (z,y) as i — oo, for some (z,y) € R?". As K is closed, we have (x,y) € P.
Moreover, |z; — yilco — 0 as i — oo implies that x = y . By continuity of F, we have
F(zi,y;) = F(z,x) = 0, which contradicts the assumption that F'(x;,y;) > ¢ for all i. Hence,
f must be uniformly continuous. O

Exercise 3.9. Prove the following properties of the Riemann integral.

(a) If f and g are integrable, and A\, u € R, then Af + pg is integrable, and

(é@f+mﬁ={éf+u49 (65)

(b) If f and g are integrable functions satisfying f < g, then we have

Af<49 (66)

(c) If f is integrable, then |f]| is integrable, and

yRiEAl (67)

(d) If f is integrable, then f? is integrable. In addition, if g is integrable, then fg = 1(f +
9)? — 12 — 147 is integrable.

4. THE FUNDAMENTAL THEOREM OF CALCULUS

By using the Riemann integral, in this section we are going to show that all continuous
functions admit antiderivatives. That is, if f : [a,b] — R is a continuous function, then
F : [a,b] — R defined by the integrals

F(z) = 7/, x € |a,b], (68)
[a,7]
satisfies F' = f in (a,b). This gives a satisfactory answer to the antidifferentiation problem
posed in Section 2, namely the problem of constructing F' satisfying the differential equation
F’ = f, where f is a given function.
In the following, we will use the notation

b
/ f= f. (69)
a [a,b]
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Lemma 4.1. If f : [a,b] — R is an integrable function, then for any c € |a,b], the restrictions
flia,) and flicp) are integrable over [a,c| and [c,b], respectively, and we have

/f+/ /f (70)

Proof. Let € > 0, and let g and h be step functions subordinate to a grid G, satisfying

g < f<hineachqe G, and f;(h — g) < e. Without loss of generality, we can assume that
c is a node in GG, meaning that G can be decomposed as G = G1 U G, where G; and G4 are
grids on [a, c] and [c, b], respectively. Then we have

L?h—gwslﬂh—g>3a (71)

which shows that the restriction f||, ) is integrable over [a,c|. Similarly, f|.; is integrable
over [c,b]. Hence we have

/(lcg+/cbg—>/acf+/cbf as ¢ — 0. (72)

On the other hand, we have

c b b b
/g+/g=/g—>/f as €—0, (73)

which completes the proof. O

Theorem 4.2 (Fundamental theorem of calculus). Let f : [a,b] — R be an integrable function,
and let

= /w fs x € [a,b)]. (74)

a
Then there exists a constant M > 0 such that

[F(z) = F(y)l < Mlz —yl,  x,y € la,b]. (75)
In addition, if f is continuous at x € (a,b), then F is differentiable at x with
F'(z) = f(x). (76)

Proof. Let g and h be step functions subordinate to some grid G of [a, ], such that g < f < h
in each ¢ € G. Then for any z,y € [a,b] with z < y, we have

(y —x) mlng</ g</ f</ h<(y—uw I[naich (77)

implying that
y
[ 1| < a0 (78)
x
for some constant M independent of x and y. Since we have
y
F) - Fla) = [, (79)

this proves the first part of the theorem.
For z,y € [a,b] with x < y, we have

y
y-a)int f< [ F<(-a)sun s, (30)
[x,y] T [w,y}
meaning that
inf f < Fly) - F(x) < sup f. (81)

[z.y] y—z [x,y]
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If f is continuous at x, then both infy, ,; f and supy, . f tend to f(z) as y — =z, and if f is
continuous at y, then both inf[, , f and supy, ,; f tend to f(y) as z — y. Therefore, F'(z)
exists and is equal to f(z) whenever f is continuous at x. O

Exercise 4.3. In the setting of the preceding theorem, show that if f is continuous at a, then
F is differentiable at a, in the sense that

F(z) — F(a)
T—a
Remark 4.4. Let f € €([a,b]), and let F' be as in Theorem 4.2. Suppose that G € € ([a, b))

is differentiable and G’ = f in (a,b). Since F' = f in (a,b), this implies that F'(z) = G(x)+C
for some constant C. Moreover, taking into account that F'(a) = 0, we infer

— f(a) as (a,b) >z — a. (82)

F(z) = G(z) — G(a). (83)

This gives us a way to compute the integral F(z) = faz f, provided that we have some
antiderivative G of f available.

Example 4.5. For f(z) = cosx, we have

xT
/ f=sinz —sina, (84)
a

since G(x) = sinx is an antiderivative of f.

Remark 4.6. In Section2, we started with the definition I, ,(f) = F(x) — F(a), where f
and F are related by F' = f, and derived some simple properties of I, »(f), such as linearity,
monotonicity, and domain additivity. Then in Section 3, using those simple properties as a
guiding light, we introduced the Riemann integral f[a,x] f for a < z, and showed that it is

well-defined at least when f is continuous. We have also shown that the Riemann integral
f[a 2] [ satisfies the aforementioned simple properties of I, ,(f). Finally, in the current section

(Theorem4.2), we proved that when f is continuous, the function F(z) = f[a 4 J satisfies

F' = f. Thus by employing the Riemann integral, we have constructed antiderivatives for
continuous functions. Now, as promised in Remark 2.2, we shall remove the restriction a < z.
In fact, for x <y, we simply define

/ f=—[ 1 (85)
y [z,y]

whenever f is integrable on [z,y]. It follows from Lemma4.1 that if f : [a,b] — R is an
integrable function, then for any z,y, z € [a, b], we have

/:f+/yzf=/:f- (36)

Moreover, by Theorem 4.2, if f : [a,b] — R is continuous and if y € (a,b), then
x
F@= [ £ welab (87)
y

satisfies F' = f in (a,b).

Exercise 4.7. Give detailed proofs of (86) and (87).
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5. FUBINI’'S THEOREM

In practice, higher dimensional integrals are often computed by reduction to repeated one
dimensional integrals, which is justified by Fubini’s theorem that we will prove below. Let
Q = [a1,b1] X ... X [an,bp] C R"?, and let f: Q@ — R. Let R = [a1,b1] X ... X [am, by] for
some m < n, and for some fixed ¢, let g : R — R be given by g(z) = f(z,t). We can call g
the restriction of f to a slice of ) defined by ¢ = const. Then we write

/R Fo,t)d™e = /R g (88)

For m = 1, we simply write dz instead of d'z.

Theorem 5.1 (Fubini). Let Q' C R"™! be a rectangle, and let Q = Q' x [a,b]. Suppose that
f:Q — R is integrable, and

F(t)= [ f(z,t)d" (89)
Q/
exists for each t € [a,b]. Then F : [a,b] — R is integrable, and

/ = r (90)

Proof. Let € > 0, and let g and h be step functions subordinate to a grid I, satisfying
g<f<hineachg€T, and [,(h—g) <e. Foreacht € [a,I], let

Glt) = / Glnd e ad H() = / 1) d e (91)

Let P be the grid on [a,b], that is induced by the grid T on @ = Q' X [a,b]. Then we have
G < F < H on each interval I € P. Moreover, for any ¢ = ¢ x I € I, we have

b b
/ / Yol t) " dt = / @l dt = 11| = |q| = / Xo (92)
a JQ' a Q
and hence

//ZAqqutd” lydt = ZA / / Xq(z,t)d"™ Lydt = /ZAqxq (93)

This means in particular that

/ and / (94)
la, b] [a b]

/M (H—G) = /Q (h-g) <. (95)

Since € > 0 is arbitrary, we infer that F' is integrable. Furthermore, invoking

/ Ggf F < H  and /gé/fS/h, (96)

[a,b] [a,b] [a,b] Q Q Q

—eé/g— Hé/f—/ Fg/h— G<-e, (97)
Q [a,b] Q [a,b] Q [a,b]

and using again the fact that € > 0 is arbitrary, (90) is obtained. O

and

we get
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Example 5.2. In light of Theorem 3.6, provided that f : @ — R is continuous, all conditions
of the preceding theorem are satisfied. For example, we can compute a multidimensional
integral as follows.

1 1 p1 gl
/ $1£B2€w3d3$:// x1x26z3d2(:c1,x2)dx3:/ / / r172e¢"3dxy dzo dos
[0,1]3 [0,1]2

//1’26‘T3 dmgd:cg //:z:ge 3day das (98)
21 1
Lo ;t
- des = = 8dpa = <
2/0 ¢ <2 ) 3 4/0 o= 4

6. NEGLIGIBLE SETS

We know from Theorem 3.6 that continuous functions are integrable. However, the Riemann
integral tolerates much worse behaviour.

Definition 6.1. A set B C @ is called negligible, or of volume zero, if for any € > 0, there
exist a grid I' on ) and a finite collection q1,...,qr € I', such that

BCcqu...Uq, and \q1]+...+\qk]§5. (99)

Lemma 6.2. Let Q' C R™! be a closed rectangle, and let h : Q' — R be a continuous
function. Then the graph B = {(z,h(z)) : = € Q'} is negligible as a subset of Q = Q' X [a, ],
for any a < néi/nh and b > ng h.

Proof. Let € > 0, and let § > 0 be such that |h(x) — h(y)| < & whenever z,y € Q' satisfy
|z — yloo < §. This is possible since h is uniformly continuous in @'. Then we construct a
grid G in @’ by subdividing each side of Q' into m equal subintervals, with m so large that
the length of each side of any cell r € G is less than . Thus we have

|h(z) —h(y)| <e whenever z,yer, reqG. (100)
For r € G, we let
oy = mem h(z), Br = max h(z), (101)

and pick a grid P on the interval [a, b] such that «, and §, (r € G) are among the nodes of
P. Finally, we construct the grid I' in Q@ = @’ X [a, b], by combining the grid G along @’ and
the grid P along the interval [a,b]. Then by construction, for each r € G, there exist finitely

many pi,...,p; € I' such that p; U...Up; =7 X [ay, 8], whose combined volume is bounded
by |pi| + ...+ |pil = |7|(Br — ) < |r|e. This means that the set | J{7 X [a;, 8] : 7 € G} can
be covered by finitely many qi, ..., g € I' with the combined volume
al+ . el <D Irle = |Qe. (102)
reG
Since B C {7 x [a,, B;] : r € G}, the proof is established. O

Remark 6.3. It is obvious that any subset of a negligible set is negligible. Moreover, the
union of two negligible sets is negligible.

Exercise 6.4. Show that the surface of a sphere, and the surface of a cube are negligible.

Theorem 6.5. Let B C Q be a negligible set, and let f : Q@ — R be a bounded function, which
is continuous in Q \ B. Then f is integrable.
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Proof. Let ¢ > 0. Then by definition, there exist a grid I' on () and a finite collection
q,--.,q: €T, such that

BCcqu...Ug, and lgi| + -+ |ak] < e. (103)
From the complementary perspective, there exists a finite collection py,...,p; € I', such that
pU...Up; CQ\ B, and Ipi| + ... +pj| > Q] —e. (104)

In other words, we have I' = {q1,..., gk, p1,...,p;}. Now, by adding more grid nodes in each
direction, and shrinking each p; slightly, we can assume that

K=pU...Up,CQ\B, and |K|>|Q|—2e. (105)

Note that the latter is equivalent to |Q \ K| < 2. Since K is closed and bounded, f is
uniformly continuous in K by the Heine-Cantor theorem (Theorem 3.8). Let § > 0 be such
that |f(x) — f(y)| < € whenever z,y € K satisfy |z — y|ooc < 0. Then we refine the grid I" so
that the length of each side of any cell g € T is less than . Thus with 'y = {g€T': ¢ C K},
we have

|f(z) — fly)| <e whenever xz,y€q, qelk. (106)
Finally, we construct the step functions
g= Z AgXqs and h = Z Byxq, (107)
qel’ qgel

with the coefficients given by
Ay=1inf f and B;=supf for qeTlg, (108)
q q

and
Ay=—-M and B;=M for ¢eT'\I'k. (109)

where M € R is such that |f(z)] < M for all z € Q. By construction, we have g < f < h in
each ¢ € I'. Moreover, we have

/(hg) =D (By—Ag)ldl < Y elal+ Y 2Mlql <<|Q| +2M -2, (110)
Q gel’ g€l g\
where in the last step we have invoked |@Q \ K| < 2e. O
Let us prove one more useful criterion on negligibility. We use the notation
|z|0o = max{|x1],..., |znl}, (111)
for the mazimum norm of x = (x1,...,z,) € R".

Lemma 6.6. Let Q C R™ be a rectangle, and let ¢ : Q@ — R™ be a Lipschitz continuous
function, in the sense that

6(2) = 0(Y)loo S Az —yloo,  forall x,yecQ, (112)
with some constant X\ > 0. If m < n, then ¢(Q) is negligible. If m = n and B C Q 1is
negligible, then ¢(B) is negligible.

Proof. We prove the case m = n first. Since ¢(B) is negligible, by definition, for any ¢ > 0,
there exists a finite collection g, ..., i of rectangles, such that

BCcqU...Ug, and lq1] + ...+ g <e. (113)

By introducing a very fine grid whose elements are cubes, and replacing each g; by a collection
of cubes covering it, we can assume that qi,...,q; are cubes, with |q1] + ... + |qx| < 2¢. Let
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2r; be the side length of ¢;, and let x; € R™ be the centre of of ¢;. Then for any x € ¢, the
Lipschitz condition gives

[6(x) = O(2i)|oo < Az — Tiloo < Ar, (114)
meaning that ¢(g;) is contained in p;, where p; = {y € R" : |y — ¢(2;)|c0o < Ari}. We have
#(B) CprU...Upg, (115)
and
Pl + A okl = 2"A(T ) = Al + -+ ak]) < 207 (116)

As e > 0 is arbitrary, this shows that ¢(B) is negligible.

We now turn to the case m < n. Let P = @ x [0,1]"7" C R", and let ¢ : P — R" be
defined by ¥ (x1,...,2,) = ¢(x1,...,2y) for £ € P. Then 1 is Lipschitz continuous, and we
have ¢(B) = ¢(Q) with B = @Q x {0} C Q x [0,1]""™. Since B C P is negligible, we conclude
by the previous paragraph that ¢(Q) is negligible. O

Exercise 6.7. Let U C R be open, and let ¢ : U — R™ be a continuously differentiable
map. Let K C U be a closed and bounded set. Then show that the restriction ¢ : K — R" is
Lipschitz continuous. Furthermore, show that for k < n, any k-dimensional bounded manifold
in R" is negligible.

7. JORDAN SETS

Definition 7.1. A set K C @ is called a Jordan (measurable) set if the characteristic function
Xk is integrable, and

K| = /Q K. (117)

is called the Jordan content or the volume of K. For a Jordan set K C @, we say that
f: K — R is integrable over K, if fxk is integrable, and

/K f = /Q fx (118)

Example 7.2. Let us find the area of the disk D = {(z,y) : 22 + 32 < 1}. For any fixed
x € (—1,1), the restriction g(y) = xp(x,y) as a function of y € (—1,1) is equal to the
characteristic function of the interval (—\/ 1— a2, V1-— xQ). Thus we compute

1,1 1 p/i—a? 1
|D| :/ XD:/ / XD(:L‘,y)dyd:B:/ / dydx:/ 21 —z2dz. (119)
[-1,1)2 -1J-1 -1J-V1-22 1

is called the integral of f over K.

An antiderivative of 2v/1 — 22 for = € (—1,1) can be found by the substitution z = cost, as

in 2t
/2\/1—332(195_—/QSithdt—/(cos%—l)dt— S“; —t4 (120)

yielding
0
=T. (121)

™

! in 2t
IDlz/ 2\/1—x2dx:<sn; —t)
—1

Exercise 7.3. Let K C @) be a Jordan set. Prove the following.

(a) If f and g are integrable over K, and A\, u € R, then Af + pug is integrable over K, and

/K(Aerug):A/KfﬂLu/Kg- (122)
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(b) If f and g are integrable over K satisfying f < g, then we have

/K f< /K 0. (123)

(c) If f is integrable over K, then |f| is integrable, and

[ )< [ (124

Exercise 7.4. Let K C Q and L C @ be Jordan sets, and suppose that f : @ — R is
integrable over both K and L. Show that f is integrable over both K U L and K N L, with

/KULH/mf:/K“/Lf' (125)

8. LINEAR TRANSFORMATIONS

Let f be a continuous function defined in R, and let F' be its antiderivative (which can be
constructed by using the Riemann integral). Let ¢ be a continuously differentiable function
defined in R. Then by applying the chain rule, we get

LR (9(a)) = F(9(2)9'(x) = F(6@)8 (@), (126)

which shows that F o ¢ is an antiderivative of (f o ¢)¢’. Since f and (f o ¢)¢’ are both
continuous, in light of the fundamental theorem of calculus, we also have

@(b) b
/ f = F(6(b)) — F($(a) = / (f o §)d), (127)
(b(a) a

which is called the substitution rule, or the change of variables formula for integrals. In this
and the next sections, we want to extend the substitution rule to integrable functions (as
opposed to continuous functions only), and to higher dimensional Riemann integrals.

We start with (homogeneous) linear transformations in one dimension. Thus we let A € R
and ¢(x) = Az. Under the mapping ¢, the interval [a, b] is transformed to

Da, \b] if A >0,

128
[Ab, Aa] if A < 0. (128)

P = ¢([a,b]) = {

If A\ =0, then P = {0} and ¢/ = 0, meaning that the substitution rule (127) becomes a
triviality. Hence in the following, we assume that A % 0. Suppose that f is integrable on P.
Then for any given € > 0, there exist step functions g and h subordinate to a grid I, such
that ¢ < f < hineach J € I' and

/ (h—g)<e (129)
P

The grid I" induces a grid on [a, ], as I = {o71(J): J €T} Then the functions g = go¢ and
h = ho ¢ are step functions subordinate to IV, and § < fo¢ < h in each I € I, Furthermore,
we have

b~
[=a= S t=allo =Xl 5 =W [ -9 < 5 a30)
a Jel Jel ‘)\‘ H

implying that f o ¢ is integrable over [a, b], with

/fo<z>—hm/g—hm|x|1/g—|x|1/f (131)
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We can write it as
/f W foqb, (132)

which gives the substitution rule (127) in the partlcular case ¢(x) = Ax with A > 0, because
in this case we have ¢/(z) = A = |\ and P = [¢(a), #(b)]. In fact, for A < 0, we have

/;j)f:_ﬁ:a)f‘ /f—‘“'/ foo= A/f 2 (133)

meaning that (127) holds regardless of the sign of \.

Remark 8.1 (Oriented intervals). In order to generalize (133) to higher dimensions, we need
to discuss what fac f with ¢ < a would become in higher dimensions. Note that the integral
[ f with ¢ < a may be considered as an integral of f over [c,a], but the interval [c,a] is
equipped with a negative length (or a negative density). Thinking along these lines leads
to the notion of oriented intervals, which yields a form of (133) that is more amenable to
generalization. An oriented interval is an interval, together with a choice of a sign (that is,
+1 or —1). Thus the interval I = [0, 1] may have positive orientation, meaning that we choose
+1 as the orientation of I, or it may have negative orientation, where we choose —1 as the
orientation of I. In this context, the interval [0, 1] with negative orientation will be denoted
by [1,0]. More generally, when J = [a, b] is declared to be an oriented interval, we will assume
that the orientation of J is equal to the sign of b — a, where of course a > b is allowed. We
sometimes write —J = [b, a] when J = [a,b], to indicate orientation reversing. Furthermore,

we define
[ == r (134)
[b,a] [a,b]

for a < b. Finally, we orient the image ¢([a,b]) of [a,b] under ¢(x) = Az according to the
following rule. If A > 0, then ¢([a, b]) and [a, b] have the same orientation, and if A < 0, then
®([a,b]) and [a,b] have the opposite orientations. In other words, we set the orientation of
®([a,b]) as sgn(A) times the orientation of [a,b]. We now can write (133) as

[ r=af feo (135)
#([a,b]) [a,b]

The reader may verify that this is valid even for a > b.

In the rest of this section, we want to generalize (135) to maps ® : R" — R™ of the
form ®(z) = Az, where A € R™". This will be achieved in several steps. As a first
step, let us assume that A is diagonal, that is, ®(z) = (A1z1,..., A\yx,) for some constants
ALy -y Ap € R Let @ C R™ be a rectangle, and let f : ®(Q) — R be an integrable function,
where ®(Q) = {®(z) : € Q}. We expect that the eventual formula will be of the form

A(Q)f:c/Qfoqp, (136)

with some constant ¢ = ¢(A1, ..., \,). It is easy to see that ®(Q) C R is a rectangle, possibly
degenerate (meaning that |®(Q)| = 0). The degeneracy occurs if Ay, = 0 for some k. This will
turn out to be a trivial case, and from now on, we assume that A; --- A\, # 0, that is, the map
® is invertible. For any rectangle ¢ C R™, the image ®~1(q) is again a rectangle, with volume

- _ld
| 1((1)\ = m (137)

We can now basically repeat what we did in the one dimensional case. For any given ¢ > 0,
there exist step functions g and h subordinate to a grid I' of ®(Q), such that ¢ < f < h in
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each ¢ € I" and

| gz (138)
2(Q)

The grid I' induces a grid on @, as I"={d"1(q): g €T} Then the functions g = g o ® and
h = ho® are step functions subordinate to I/, and § < fo® < h in each ¢ € I"". Furthermore,

we have
_— RV gl
/Q(h—g) - q;(h—g)\q@ "(g)| = qzé;(h—g)}qw
(139)

et g < S

implying that f o ® is integrable over @), Wlth

/fo<I>_11m g:lim|)\1---)\n|_1/ g:|)\1---)\n|_1/ f. (140)
&0 ®(Q) ®(Q)

e—0
/ f:|/\1~--)\n\/fo<1>, (141)
2@ Q

which is the substitution rule we have been looking for. We can also check that if Ay = 0 for
some k, then both sides of the preceding equality vanish, and therefore it is trivially true.

We can write it as

Remark 8.2 (Oriented domains). It is now a matter of introducing new definitions to extend
(141) to the “oriented” setting. We define an oriented domain as a set K C R™, together with
a choice of a sign (that is, +1 or —1). If K is an oriented domain, the same domain with the
opposite orientation is denoted by —K. For positively oriented domains, the integral fQ fis
defined to be the same integral, where () is considered to be a subset of R™, that is, we may
simply forget about the orientation. For negatively oriented domains, we define

[Qf=—4ﬁ (142)

where (@ is positively oriented. Furthermore, if () is an oriented domain and if ® : R — R”
is defined by ®(x) = (Mz1,..., A\nZy), then the orientation of ®(Q) is set to be sgn(A; -+ Ay,)
times the orientation of (). With these new concepts at hand, it is not difficult to derive

f:)\l...)\n/focb, (143)
2(Q) Q

which now holds even when () is an oriented rectangle. As there is a slight danger of confusion
between (141) and (143), one must be careful to specify whether the integrals are in the
“oriented” setting as in (143), or in the “plain vanilla” setting as in (141).

To extend the substitution rule to general linear transformations ®(z) = Az, we need to
prove a couple of preliminary lemmata. The first lemma generalizes the integrability criterion
to allow approximation by integrable functions, as opposed to step functions only.

Lemma 8.3. Let f: Q — R, and suppose that for any € > 0, there exist integrable functions
ge and he, such that g- < f < he and

/ (he — ge) <e. (144)
Q

Then f is integrable, and

e—0

/ f = lim (145)
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Proof. Let € > 0 be arbitrary, and let g and h. be as in the statement. Since g and h. are
integrable, there exist step functions g. and h., subordinate to some grid I', such that g. < ge
and h. < h. in each ¢ € T', and that

/ (9 —G:) <e,  and / (he —he) <e. (146)
Q Q

This implies that §. < f < h. in each ¢ € ', and that

/Q (he — 30) < /Q (e — ha) + /Q (he — g:) + /Q (g — ) < 3e. (147)

As e > 0 is arbitrary, we conclude that f is integrable. O

The following lemma reduces the computation of the volume |®(Q)| for an arbitrary rec-
tangle @ C R™ to that of |®(Q1)|, where Q1 = [0,1]™ is the unit cube.

Lemma 8.4. Let QQ C R"™ be a rectangle, and let ® : R™ — R™ be defined by ®(z) = Az, with
some A C R™™. Then we have |2(Q)| = |Q||®(Q1)|, where Q1 = [0,1]™ is the unit cube.

Proof. If A is singular, then dim ®(R") < n, and hence |®(Q)| = |®(Q1)| = 0. In the following,
we assume that A is invertible.

For A > 0, let @x = [0,A]". Then we have Qx = A(Q1), where A : R" — R” is
defined by A(x) = Az. Since ®(A\z) = A®(x), we have ®(Q)) = A(P(Q1)), and hence
|P(Q))| = A"|®(Q1)]. Now, by using the nodal points 0, A, 2, ... in each coordinate direc-
tion, we construct a grid I' in a rectangle R containing Q) = [0,b1] X ... x [0, b,]. Thus, each
q € T is a cube with side-length A, and the region R must be strictly larger than @) whenever
any of by, ..., b, is a non-integer multiple of \. More precisely, let £;, € N be such that A\l < by
and A\(0p + 1) > b, for k=1,...,n, and we set R = [0, A\({1 +1)] x ... x [0, A\(¢y, + 1)]. Next,
we set h = xr, and define g to be the characteristic function of R’ = [0, Al1] x ... x [0, A\y,].
It is clear that g < xg < h, and that

/(h—g)= R\ R'| < CA, (148)
R

for some constant C' independent of \. We let g = g o &1 and h = ho ® 1. Then we have
9 < xa(@) < h and

/P(ﬁ—§)= Yoole@l= Y AMR(Qu)] =R\ R[[2(Qi) < CleQu)A,  (149)

qeT\I” qeT\IV

where P C R" is some large rectangle containing ®(Q), and I' = {ge T : ¢ C R'}. As A >0
is arbitrary, Lemma 8.3 guarantees that the integral of x¢(g) can be computed by taking the
limit A — 0 in

/P =Y [0g) = 3 N@(Q1)] = [R|9(Q1)]. (150)

qel” qel”
Since |R'| = |Q] as A — 0, we have |®(Q)| = |Q||®(Q1)|. O
To compute the volume |®(Q1)|, we consider it as a function of the matrix A, or equivalently,
as a function of the columns Aq,..., A, of A, as
W(A) = w(Ar,. .. Ay) = |2(Q1). (151)

Geometrically, ®(Q1) is an n-dimensional parallelogram whose sides are given by the columns
of A. First of all, we know that w(A) = 0 if A is singular. In particular, we have

w..,V,...,V,...)=0 for V e R" (152)
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Let us scale one of the columns of A by a factor A > 0, and see how w changes. We can write
® in terms of the columns of A as ®(z) = 2141 + ...+ z,A,. If we scale the first columns of
A by A, we get the new map @) (x) = 21 A; + 2242 + ...+ 2, A,. The parallelogram ®)(Q1)
is obtained by scaling ®(Q1) along the side represented by A;. We have

D)\(Q1) ={z1 A1+ 2040+ ...+ 2, A, :0< 2, <1, k=1,...,n}
={x1 A1 +x2As+ .. . +2,A,:0< 21 <N 0<uz,<1,k=2,...,n} (153)
= ®([0,A] x [0,1] x...x[0,1]),
and since the volume of [0, A] x [0,1] x ... x [0,1] is A\, Lemma 8.4 gives
wW(AA1, Ag, ..., Ay) = |PA(Q1)] = NP(Q1)] = Aw(A1, Ag, ..., Ay). (154)
If we pick A < 0, then the same argument yields
D)\ (Q1) = P([A\,0] x [0,1] x...x[0,1]), (155)
and therefore, for A € R, we have
w(AA1, Ao, AY) = [ Nw(Ag, Ao, .o Ay). (156)

Now, we consider the map Vg(x) = z1(A1+SA2) + 2242+ ...+ 2, A, where § € R, that is,
we add a multiple of the second column to the first column of A. The parallelogram ¥3(Q1)
is obtained by applying a shear transformation to ®(Q1). In this case, we have

Us(Q1) = {z1(A1 + BA2) + x0Ao+ ...+ 2,4, :0< 2, <1, k=1,...,n}
={1141 + (x2 + Br1)As+ ...+ 2, An: 0< 2, <1, k=1,...,n} (157)
= ®(Sp),
where S would be a shear transformation of )1, and is defined by
Sg={(z1,22+ Br1,23,...,2,) 1 € Q1 }. (158)
It is not difficult to show that |Sg| = 1, and hence Lemma 8.4 yields
w(Ar+ B A2, Az, An) = [W(Q1)| = [9(5p)| = [Spl[P(Q1)] = w(Ar, A2, ..., An). (159)
We conclude that shear transformations do not change volume.
Exercise 8.5. Show that |Sg| = 1.
Supposing that A is invertible, any vector V € R™ can be written as
V=pA1+.. .+ BrAn. (160)
Then by using the transformation properties (154) and (159), for 8; > 0, we have
w(A1+V,Ag, ..., An) :w(A1 + B1A, Ao, Ay) = (14 Br)w(Ar, Ag, ... Ay)

w(Ar, Az, ..., Ap) + frw(Ai, Ag, ..., Ay) (161)
w(Ay, Az, ..., Ap) + w(B141, Ag, ... Ay)
w(Ap, Ao, ..., Ap) +w(V, Ag, .. Ay).
For —1 < 81 < 0, we have
w(A1+V, Ag, ... Ap) = (14 B1)w (Al,AQ,...,A )
=w(A1, Az, ..., Ap) — (=B1)w(A1, Az, ..., 4y) (162)

w(
zw(Al,Az,. An) —w(=p141, Az, ..., Ap)
w(Al,AQ,. ) ( VAQ,...,A )
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Finally, for 5; < —1, we have
w(A1 +V,Ag, ..., Ay) = —(1 4+ f1)w(—A1, Ag, ..., Ap)
= —w(—A41,A9,..., 4,) + (=01)w(—A1, A, ..., A,)
= —w(—A41,A9,..., 4,) + w(B1A1, Aa, ..., Ap)
= —w(—A41,A9,..., 4,) +w(V, Ag, ..., Ay).

(163)

We notice from the preceding equalities that all three cases would be special cases of
w(A1+V, Ag, ... Ap) = w(Ay, Ag, ..., Ay) +w(V, Ag, ..., Ayp), (164)

if we had the property w(—A1, Ag, ..., A,) = —w(A1, Ag,..., A,). This idea leads to the

proof of the following result.

Lemma 8.6. We have w(A) = |det(A)].

Proof. We introduce

w(A)  for det(A4) >0,

—w(A) for det(A4) <O0. (165)

W(A) = sgn(det(A))w(A4) = {

Then (156) implies

a]()\Al,AQ,...,An) :/\(Z)(Al,AQ,...,An), A ER, (166)
and an inspection of (161)-(163) reveals that the additivity property (164) holds for @. Of
course, (164) and (166) hold not only for the first argument, but for each argument of @. We

also have (152) for @, meaning that @ is a totally antisymmetric n-linear function. Now linear
algebra tells us that

O(A) = @(I) det(A) = det(A). (167)
Finally, we conclude that w(A) = sgn(det(A4))w(A) = sgn(det(A))det(A) = |det(A4)|. O

In combination with Lemma 8.4, the preceding lemma implies that |®(Q)| = |Q|| det(A)]
for any rectangle @ C R™ and a linear map ®(z) = Ax with some A C R"*™.

Theorem 8.7. Let Q C R™ be a rectangle, and let ® : R — R"™ be defined by ®(x) = Ax,
with some A C R™ ™. Let f: ®(Q) — R be a bounded function such that f o ® is integrable
over Q. Then f is integrable over ®(Q), with

/ f:|det(A)|/fo<I>. (168)
2(@) Q

Proof. We assume that A is invertible, since otherwise the theorem is trivial. For any given
€ > 0, there exist step functions g and h subordinate to a grid I of @, such that g < fo® < h
in each ¢ € T and

/ (h—g) <e. (169)
Q

Let B=Q\|J{q: g € T'} be the space between the grid rectangles. We can modify g and h
in B, such that g < f o ® < h holds everywhere in ). Then g = go ®land h=ho® ! are
integrable functions satisfying g < f < h, and

[ t-9)= 30 9 o] = X0 - )l cetl )l
(@) qel’ qel’ (170)
= | det(A)| / (h—g) <|det(A)le.
Q
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Invoking Lemma 8.3, we infer that f is integrable over ®(Q), with

/ f=lim = lim | det(A |/ g =|det(A |/ fod. (171)

This completes the proof. O

Remark 8.8. Here we extend Theorem 8.7 to the setting where the domains are equipped
with orientations. If () is an oriented domain and if ® : R™ — R" is a linear transformation
®(x) = Az, then the orientation of ®(Q) is defined to be sgn(det(A)) times the orientation of
Q. In other words, transformations with det(A) > 0 preserve the orientation of @), and those
with det(A) < 0 flip the orientation of ). Then (168) in Theorem 8.7 should be replaced by

/ f—det(A)/foq), (172)
2(Q) 0

where it is now understood that the integrals take into account the orientation of their do-
mains, cf. (142) in Remark 8.2.

9. GENERAL CHANGE OF VARIABLES

In this section, we will extend the substitution rule from the preceding section to a gen-
eral class of differentiable mappings. The main device that makes everything work is local
approximation of differentiable mappings by linear maps.

Let U C R™ be an open set, and let ® : U — R™ be a continuously differentiable map.
Let @ C U be a closed rectangle. We assume that the restriction ® :  — R" is injective,
and that the inverse =1 : ®(Q) — Q is continuously differentiable. Let f : ®(Q) — R be a
bounded function such that f o ® is integrable over (). Following the proof of Theorem 8.7,
for any given € > 0, there exist step functions g and h subordinate to a grid I' of @, such that
g< fod® <hineachqgel and

/ (h—g) <e. (173)
Q

Let B=Q\U{q: ¢ € T}. We can modify g and h in B, such that g < f o ® < h holds
everywhere in Q. By Lemma6.6, the set ®(B) is negligible, and hence § = g o ®~! and
h = h o ®~! are integrable functions satisfying § < f < h.

e If a rectangle ¢ € I' is very small, then ®(x) ~ ®(z,) + DP®(z,)(x — z4) for = € g,
where z, € ¢ is some point. Hence we expect that |®(q)| ~ |det(D®(x,))|, and

[p D=2 g)l 2@l = (k- )] Jdet (DBl
qel’ qgel’ (174)
< max |det(DP)| / (h—g) < Ce.
Q Q
If we can justify this expectation, then by Lemma 8.3 we would infer that f is integrable

over ®(Q).
e The next step would be to take the limit ¢ — 0 in

A oF = 2 II2@I = X, et (D)ol = /Q gldet(D®),  (175)

gerl’ qel

which suggests the guess

/ f:/foq>\det(pq>)|. (176)
a@"  Jo
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We shall now rigorously justify the aforementioned heuristic reasoning. The following result
will be of fundamental importance.

Theorem 9.1. For any § > 0, there exists p > 0 such that whenever ¢ C @ is a rectangle
with diameter not exceeding p, we have

(1 —=~0)|det(D®(x,))llq] < [®(q)] < (1 4 ~6)| det(DP(xq))llql, (177)
where x4 is the centre of q, and vy is the ratio between the longest and the shortest sides of q.

Proof. Let 6 > 0 be a small number, and let ¢ = [a1,b1] X ... X [an,by] C @ be a rectangle.
Without loss of generality, we assume that ¢ is closed, and that ¢ is nondegenerate in the sense

that [g| > 0. Let A : R* — R" be defined by A(z) = (@ththizoden - antbnt(nzan)in),

2
Note that A(Q1) = ¢, where @1 = [—1,1]", and A(0) = z,. We can write A(z) = 24 + Ax
with a diagonal matrix A € R™*". Next, we define F' : Q1 — R™ by
F(z) = A Y(D®(x,) '@ (A(x))). (178)
By Lemma9.2 below, for all z,y € (Q1, we have
[F(y) — F(z) = DF(0)(y — #)|oo < nly — 2| sup |DF(z) — DF(0)]oc- (179)
ze@1
We compute
DF(z) = A"'D®(z,) ' DO®(A(x))A, (180)
which implies that DF(0) = I and
DF(z) — DF(0) = A~'D®(z,) 1 (D®(A(2)) — D®(z,))A. (181)

Taking into account that A is diagonal, we infer
|DF(2) = DF(0)]oc < 7| D®(14) " (DR(A(2)) — DP(24)) o0

< ynsup [(D) ™ |oc| DR(A(2)) = DD ()| (182)
Q
By the uniform continuity of D®, we can choose p > 0 such that
n?sup |(D®) | sup [DP(2) — DB(xy)|o0 < 6, (183)
Q zE€q
whenever diam(q) < p, yielding
[F(y) = F(z) = (y = %)|oo < 0]y — 2o, (184)
for all x,y € Q1. From this, we have
[F(y) = F(@)loo < |y = zfoo + [F(y) — F(z) = (y — 2)[oc < (1 +70)|y — z[ec, (185)
and putting y = 0, we get
[F(2)]oc < (1 +70)|2|s0, (186)
meaning that F'(Q1) C (1 +76)Q1 :={(1+~d)z : v € Q1}. A similar reasoning gives
[F(y) = F(2)loo 2 |y = loo = [F(y) = F(2) = (¥ = 2)|oc = (1 = 70)[y — Z[c0, (187)

implying that F' is injective if v is suitably controlled.

Our next goal is to show that (1 —v0)@Q1 C F(Q1), that is, to show that the equation
F(x) = z can be solved for the unknown x € @ for any given z € (1 — vd)@Q1. Suppose that
z € (1 —~9)Q1, and define the map ¢ : Q1 — R™ by ¢(z) = z+x — F(x). We have ¢(z) = x
if and only if F'(x) = z. Moreover, from (184) we get

() = W)loo = [2 =y + F(y) = F(2)|oo <70y = #[co, (188)
and

’¢(x)|oo < ‘Z|oo + |5C _O+F(0) - F(x)|oo < |Z’oo +’76|$|oo < (1 _75) +y0 =1, (189)
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meaning that ¥(Q1) C @1 and v is a contraction. Therefore, by the contraction mapping
principle, there is a unique = € @Q; satisfying ¢)(z) = x. This shows that F(z) = z has a
solution for any given z € (1 — vd)Q1, and hence (1 —v§)Q1 C F(Q1).

At this point, we can write

(1=70)Q1 C F(Q1) C (1+6)Q. (190)

Taking into account the definition F(z) = A~1(D®(z,) " '®(A(z))), and unwinding the above
inclusion, we get

D®(x¢)(A((1 =76)Q1)) C (q) € D () (A((1 +76)Q1)), (191)
which completes the proof. Il

Lemma 9.2. Let Q2 C R” be an open set, and let F : Q — R™ be differentiable in 2. Suppose
that DF(z*) is invertible for some x* € K, where K C Q is a convex set. Then we have

[F(y) — F(x) = DF(2")(y — 7)o < nly — 2[oo sup |DF(2) = DF(2")[e0,  (192)

for any x,y € K.
Proof. Let x,y € K, and let g(t) = F(z +tV), where V =y — x. Then we have
F(y) = F(x) = g(1) — 9(0), (193)
and
g(t) =Dy F(x+tV)=DF(x+tV)V. (194)

By the mean value theorem, for each k, there exists 0 < ¢, < 1 such that gx(1)—gx(0) = g}.(tx),
that is,

Fy(z) — Fi(y) = Dy Fi(x + V) = DFg(z + V)V = DFg(z + t,V)(y — ). (195)
This implies that

Fi(y) — Fi(x) — DEy(2")(y — x) = (DFg(z + V) — DF(2z))(y — z), (196)
and hence
|Fi(y) = Fi(x) = DF(z")(y — 2)| < D [0:Fp(x + t,V) — 0:Fy(a*)|lys — 4. (197)
i=1

Note that 0;F}, is simply an entry in the Jacobian matrix DF, and so we have

|0i Fi.(x + t, V) — 0; F(2™)| < sup |[DF(z) — DF(2")] o, (198)
z€EK

because x 4tV € K by convexity. This completes the proof. O

Finally, we are ready to state and prove the general change of variables formula.

Theorem 9.3. Let U C R"™ be an open set, and let ® : U — R"™ be a continuously differentiable
map. Let Q C U be a closed rectangle. We assume that the restriction ® : Q — R" is injective,
and that the inverse ®~1 : ®(Q) — Q is continuously differentiable. Let f : ®(Q) — R be a
bounded function such that f o ® is integrable over Q. Then f is integrable over ®(Q), with

/ f:/foq>\det(pq>)|. (199)
a@  Jo
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Proof. Without loss of generality, we assume f > 0, since otherwise, we can decompose
f = max{f,0} — max{—f,0} and work with two positive functions. For any given ¢ > 0,
there exist step functions g and h subordinate to a grid I of @, such that 0 < g < fo® < h
in each ¢ € I" and

JXEE (200)
Q

Let B=Q\ U{¢:q €T} We can modify g and h in B, such that g < fo ® < h holds
everywhere in Q. By Lemma6.6, the set ®(B) is negligible, and hence § = g o ®~! and
h = ho® ! are integrable functions satisfying § < f < h. Without loss of generality, we can
assume that the diameter p and the degeneracy parameter v of g € I" are suitably controlled,
so that Theorem 9.1 can be applied to any ¢ € I, regardless of the choice of ¢, with § > 0
that can be chosen at will. Thus we have

/ (h=g) =) (h=g)| |2(a)| < (1+78) ) (h—g)| |det(DD(z,))llq|
(@) qel’ qel’ (201)
< (14 ~0) mgx\det(D@ﬂ /Q(h —g) < Ce,

implying that f is integrable over ®(Q), cf. Lemma8.3.
Now we need to take the limit ¢ — 0 in

[D(Q)gzzg(q@(qn, and for L) h="h] [e(q) (202)

qel’ qel
We have
> gl |®@] = (1=96) > g|, [det(D®(x))lldl, (203)
qel’ qel
Zh\ 1D(q)| < (1+~6) Zh\ |det(D®(x,))|]ql, (204)
qel’ qel
which yield
(1=78) Y Gylal <D gl |®@], Y bl |®(q)] < (1+70) ) Hyldl, (205)
qel’ gel gel gel
where
Gy = ir;f (g‘q \det(D¢)|> , and H, = sgp (h!q \det(D‘I))|> . (206)
Then for
G = Zquq, and H= Z Hyxg, (207)
qel’ qgel

we have G < (f o @) |det(D®)| < H, and

/(f @) |det(D®)| = lim | G = lim [ H. (208)
Q e—0 Q
Since we have
0= [a< [ g<[ R+ [ n (209)
Q :4(@) 2(Q) Q
and § > 0 can be made arbitrarily small while keeping v bounded, we infer
lim g = lim h= / (f o @) |det(D®)], (210)
=0 Jo)? =0 Jage) Q

which completes the proof. O
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Remark 9.4. Following the pattern of Remark 8.8, we can easily extend Theorem 9.3 to the
setting where the domains are equipped with orientations. If () is an oriented domain and
if & :@Q — R" is a differentiable transformation where det(D®) does not change sign in @,
then the orientation of ®(Q) is defined to be sgn(det(D®)) times the orientation of Q. In
other words, transformations with det(D®) > 0 preserve the orientation of @), and those with
det(D®) < 0 flip the orientation of (). Then (199) in Theorem 9.3 should be replaced by

/ f:/(foq>)det(p<1>), (211)
2@ Jo

where it is now understood that the integrals take into account the orientation of their do-
mains, cf. (142) in Remark 8.2. Said it plainly, the latter simply means that to compute an
integral over a negatively oriented domain, one computes the integral in the usual way, and
then takes its negative. Nothing changes if the domain is positively oriented. Finally, we
reemphasize that one must be mindful of whether the integrals are in the “oriented” setting
as in (211), or in the “plain vanilla” setting as in (199), since there is no notational difference
between the two integrals.
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